Bioanalysis Zone

Surrogate matrix and surrogate analyte approaches for definitive quantitation of endogenous biomolecules

0

Background: Quantitation of biomarkers by LC–MS/MS is complicated by the presence of endogenous analytes. This challenge is most commonly overcome by calibration using an authentic standard spiked into a surrogate matrix devoid of the target analyte. A second approach involves use of a stable-isotope-labeled standard as a surrogate analyte to allow calibration in the actual biological matrix. For both methods, parallelism between calibration standards and the target analyte in biological matrix must be demonstrated in order to ensure accurate quantitation. Results: In this communication, the surrogate matrix and surrogate analyte approaches are compared for the analysis of five amino acids in human plasma: alanine, valine, methionine, leucine and isoleucine. In addition, methodology based on standard addition is introduced, which enables a robust examination of parallelism in both surrogate analyte and surrogate matrix methods prior to formal validation. Results from additional assays are presented to introduce the standard-addition methodology and to highlight the strengths and weaknesses of each approach. Conclusion: For the analysis of amino acids in human plasma, comparable precision and accuracy were obtained by the surrogate matrix and surrogate analyte methods. Both assays were well within tolerances prescribed by regulatory guidance for validation of xenobiotic assays. When stable-isotope-labeled standards are readily available, the surrogate analyte approach allows for facile method development. By comparison, the surrogate matrix method requires greater up-front method development; however, this deficit is offset by the long-term advantage of simplified sample analysis.

To view restricted content, please:
Share:

Leave A Comment