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Review

Even though substantial advances have been 
made in the understanding of PK, PD and 
immunogenicity of biotherapeutics in the past 
decade, there are still several gaps that need to 
be addressed, especially in the context of new 
generation of novel constructs like bispecific 
modalities, antibody–drug conjugated (ADC) 
to small molecules or toxins and recombinant 
fusion proteins. The increasing complexity and 
novelty in the structure of biotherapeutics calls 
for a modification or redesign of the existing 
ligand-binding assay (LBA) formats. The evo-
lution of biotherapeutics from partially human, 
chimeric, humanized and finally to fully human 
was intended to engineer molecules with closer 
resemblance to self-proteins that are more toler-
ant to immune responses. However, new aspects 
of impurities from cell lines or cell systems, such 
as Escherichia coli and yeast were also introduced 
with the innovative engineering. The desire for 
less-frequent dosing and high potency also led 
to the generation of high-concentration for-
mulations, where the biotherapeutics could 
potentially conglomerate and form dimers, tri-
mers or aggregates during long-term storage or 
during reconstitution from lyophilized forms. 
All of these aspects exacerbate the immuno
genicity risk and, potentially, leading to reduced 
efficacy/exposure of biotherapeutics.

The immunogenicity to biotherapeutics mea-
sured as anti-drug antibody (ADA) response 
can impact the exposure (PK), response (PD) 
and drug safety (toxicity findings and adverse 
events). Furthermore, immunogenicity has 
been shown to be associated with a reduction 
or loss in efficacy; therefore it is a factor to 
consider in the clinical setting. LBA formats 
are usually employed to determine the level of 
biotherapeutics immunogenicity quantitatively 
or qualitatively. However, the reliable assess-
ment of PK/PD and ADA can be influenced by 
the sensitivity, specificity, accuracy and preci-
sion of the bioanalytical assays, including the 
potential interferences by drug and/or immune 
reactive material present in the study samples. 
An increased understanding of the impact of 
ADA on PK and PD will enable an adequate 
dose selection for long-term toxicology studies, 
as well as first-in-human dosing. The prospective 
awareness of the doses where immune response 
can pose an obstacle, can be useful in selection 
of low or high doses that can reduce or overcome 
the unwanted response, respectively.

This review illustrates several key challenges 
with regard to understanding the ADA and 
PK/PD relationships, including the factors to 
consider during PK/PD data interpretation, the 
possible mechanisms by which ADA impact the 
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PK/PD, confounding factors associated with the 
development and validation of LBAs and con-
siderations for quantitative model-based ana
lysis of immunogenicity impact. The review also 
highlights the opportunity for improvements 
in order to develop and validate fit-for-purpose 
bioanalytical methods, while recognizing these 
challenges. 

PK/PD evaluations & data 
interpretation 
PK characteristics of biotherapeutics are often 
complex, involving linear and nonlinear processes. 
The nonlinear PK commonly involves target-
mediated dispositions [1,2]. PD characteristics of 
biotherapeutics are also often complex involving 
multiple functional attributes of the molecular 
structure, such as Fab region of monoclonal anti-
body (mAb) for target engagement, FcgR bind-
ing site for antibody-dependent cell cytotoxicity 
(ADCC ) and complement-dependent cytotoxic-
ity (CDC), receptor internalization, and so on. 
While PK data combined with relevant PD data 
allow for the elucidation of exposure–response 
(E–R) relationships of desired effects; PK data 
combined with safety/toxicity data provides infor-
mation on E–R relationships  of undesired effects. 
In order to obtain E–R relationships that are use-
ful and impactful for decision-making in develop-
ment programs, two elements are essential. The 
first is the selection of clinically meaningful PD 
markers, because the resulting E–R relationships 
will have enhanced probability of being correlated 
with clinical outcomes [3,4]. The second is the 
selection of the most relevant bioanalytical assay 
that can produce concentration data reflective of 
the moiety(ies) associated with PD responses [5]. 

E–R relationships are often the foundation 
for decision-making at milestones of develop-
ment programs. For instance, preclinical E–R 
facilitates the decision of advancing into clini-
cal development and of the first-in-human dose 
selection; E–R data from Phase II dose-ranging 
studies facilitate the selection of dose(s) for con-
firmatory Phase III studies; the demonstration of 
E–R in pivotal Phase III studies can serve as the 
evidence of effectiveness [6]. Hence, characteri
zations of PK and PD properties are usually 
conducted over a wide range of doses in order 
to derive the E–R relationship. 

Mechanisms behind immunogenicity 
of biotherapeutics
The immune responses to biotherapeutics 
can affect the overall exposure and/or toxicity 

findings in preclinical studies. Immunogenicity 
is monitored in most preclinical and clinical 
studies via the measurement of ADA [7]. It is 
well-recognized that immunogenicity of bio-
therapeutics can vary across products and across 
study populations, depending on many influenc-
ing factors, such as the product origin (e.g., for-
eign or endogenous), the route of administration 
[8], concomitant medications [9], patient-related 
factors such as genetic makeup, diseased state 
of the individual and immune-suppressed ver-
sus immune-reactive state of the individuals. 
The outcome of immunogenicity can also vary, 
ranging from little to no impact to serious health 
implications [10,11]. In instances where the impact 
of immunogenicity was not clearly delineated 
during clinical development, postmarketing 
studies may be conducted to provide further 
immunogenicity information following chronic 
dosing. 

The humoral immune response to proteins 
is characterized by the generation of antibodies 
that could be T-cell-dependent or -independent. 
The T-cell-independent antibody responses may 
be generated when B-cells recognize a repeated 
pattern (motif) in the therapeutics and respond 
by transiently producing low-affinity, pre-
dominately IgM antibodies [12]. On the other 
hand, high-affinity antibodies generated in 
conjunction with T-cell help are referred to 
as T-cell-dependent or thymus-dependent 
antibodies. 

The T-cell-dependent antibody response is 
an outcome of interplay of antigen presenting 
cells, T-cells, secreted cytokines and B-cells. The 
mature immune response to the exogenously 
administered biotherapeutics is also influenced 
by the genetic factors associated with each indi-
vidual, such as HLA haplotype expression and 
T-cell/B-cell repertoire. The T-cell-independent 
low affinity responses are primarily observed 
within a couple weeks after the first dose of the 
biotherapeutics. Subsequently, chronic mul-
tiple dosing with the biotherapeutics can be 
associated with the T-cell-dependent antibody 
responses that can lead to a persistent memory 
cell response. Once the humoral response is 
triggered, the onset and magnitude of such a 
response can also differ, depending on the nature 
of biotherapeutics, the dose route and concen-
tration as well as immune competency of the 
diseased individual. While very low and high 
doses might not be impactful, moderate doses 
might provide a consistent antigenic stimulus 
to mount a long-lasting response that matures 

Key Terms

Immunogenicity: Ability of 
an antigen, can be the 
biotherapeutic, to elicit immune 
responses, which can be 
humoral and/or cell-mediated 
immune responses.

Biotherapeutics: 
Therapeutic material produced 
using biological means, including 
recombinant DNA technology. 
Most biotherapeutics are 
proteins that are engineered in 
the laboratory for 
pharmaceutical use.

Ligand-binding assay: 
Bioanalytical method for 
support of macromolecules in 
preclinical and clinical 
development, which relies on 
specific protein binding to the 
analyte of interest. 

Anti-drug antibody: 
Antibody that specifically 
targets biotherapeutics
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into long-term T-cell-driven B-cell response. 
The impactful antibody response can also be 
observed in biotherapeutics that have higher 
nonhuman antigenic epitopes. Such molecules 
can be associated with a fast onset and persistent 
responses that can impact exposure, compared 
with biotherapeutics that lack such nontolerant 
epitopes. Similarly, the immune state of an indi-
vidual can influence the immune responses; 
especially true in immune compromised and/or 
suppressed individuals due to chemotherapy, 
concomitant medications such as steroids and 
other immunosuppressants that can modulate 
the immunogenicity of the biotherapeutics. 

The magnitude of ADA as well as onset (when 
ADA is first observed) can impact the in vivo 
exposure and the efficacy of the biotherapeutics. 
The longevity of the response can also impact the 
overall exposure, especially if the ADA response 
matures from a binding response to a neutral-
izing response, due to affinity maturation or 
potential epitope spreading. 

Bioanalytical approaches in PK & ADA 
assessment
The LBA format has been the gold standard for 
quantification of biotherapeutics and characteri
zation of immune response to biotherapeutics 
[13–16]. With the advent of innovative tech-
nologies and novel reagents, LBA methods 
have evolved to overcome resource constraints 
and avoid extensive development for provid-
ing robust, sensitive and specific data [17–20]. 
Importantly, an increased rigor and depth of 
assay characterization allows for a more explicit 
understanding of the limitation of LBA and 
the associated data interpretation in support of 
biotherapeutic development. 

Multiple assay platforms and formats are 
available for LBA development. However, selec-
tion of the most appropriate assay platform and 
format can still be challenging. Critical assay 
reagents, assay conditions and a combination of 
other contributing factors can manifest in bio-
analytical error, misleading PK and ADA evalu-
ation [15]. Hence, a thorough understanding of 
these challenges and designing proper experi-
ments to assess the impact of the data is impera-
tive. Such approaches would enable the choice 
of the most appropriate LBA for the pertinent 
question being posed. 

�� Assays for immunogenicity assessment
The measurement of clinical and preclini-
cal immunogenicity involves detection and 

characterization of pre-existing and treatment-
induced ADA. Various analytical methods have 
been used to detect or monitor the presence 
of ADAs, including ELISA, radioimmunoas-
say or radioimmunoprecipitation assay, surface 
plasmon resonance, and electrochemilumines-
cence-based platforms [21–23]. The sensitivity and 
specificity of most of these technologies depend 
on the specific binding of the ADA to its target 
drug via the antigen binding site, that is, the 
idiotype or complementary-determining region. 
Due to this interaction, only the nondrug com-
plexed ADA can be detected. The inability to 
detect ADA due to circulating therapeutic is one 
of the major concerns during ADA assessments 
in multiple dose clinical studies and in preclini-
cal studies in general. Several approaches have 
been considered to reduce the effect of excess 
therapeutic on the ADA and PK LBAs, including 
the pretreatment of samples with mild acid to 
dissociate therapeutic-ADA immune complexes 
or with protein G/L depletion of serum to remove 
excess-free mAb-based therapeutic, or the use of 
platforms such as Gyrolab™ and ImmunoCAP®. 
The bridging-based Meso Scale Discovery® and 
Gyrolab platforms are designed to tolerate excess 
biotherapeutic interference caused by the incor-
poration of an acid dissociation pretreatment of 
the sample [24]. 

�� Assays for PK evaluation
To support PK, TK and PD analyses, the quan-
tification of uncomplexed concentration of bio-
therapeutics is desirable. The term uncomplexed/
free refers to the active form of the biotherapeu-
tic where the functional region of molecule is 
not masked by interfering ligands such as ADAs, 
soluble forms of targets or receptors. An estimate 
of the uncomplexed form of the biotherpaeutic 
provides a true measure of the PK. The LBA can 
theoretically measure uncomplexed, complexed 
or total (i.e., the sum of analyte in uncomplexed 
and complexed forms) concentration of thera-
peutic mAbs depending on reagents, format 
and experimental conditions. Antigen-capture 
assay, bridging assay, anti-idiotipic antibody 
capture assay, generic assay using anti-Fc anti-
bodies as a capture reagent [5] and competitive 
assay are the five most commonly used LBA 
formats [5,19,25–27]. 

For biotherapeutics, the immune-complex of 
the drug and ADA can exist in vivo through 
a noncovalent binding; therefore, a biomatrix 
sample may contain uncomplexed drug, 
drug–ADA complexes (e.g., mono- and/or 
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bivalent complexes for mAbs) or uncomplexed 
ADA. The drug–target complexes can also exist 
in the sample if the target is a soluble ligand or 
shed receptor. Although typically, the complex 
is very low due to the low endogenous levels of 
target/receptor. Unlike ADA–drug complex, the 
drug–target complex often only takes a small 
portion of the total therapeutics measurement, 
unless the target level is significantly increased 
in diseased or post-treatment subjects. In prin-
ciple, LBA formats can be designed to measure 
all forms of drug using proper assay reagents. 
For data interpretation, ADA is differentiated 
into two categories: binding ADA and neutral-
izing ADA. For PK/PD evaluations, the primary 
interest is the non-neutralizing ADA-bound 
drug because it is the bioactive form with the 
assumption of drug–ADA complexes being 
inactive moiety. Therefore, the PK assay can be 
designed with employment of anti-idiotipic anti-
body or therapeutic target as a capture reagent 
(Figure 1).

Traditionally, the interference from ADA is 
evaluated as part of the specificity component 
of the PK assay validation. The experiment often 
involves spiking various levels of polyclonal 
ADAs into QC samples containing a range of 
known amounts of the biotherapeutic. Result-
ing biotherapeutic concentrations in spiked QC 
samples are subsequently compared with those 
of unspiked QC samples at the same concen-
trations to calculate the percentage reduction, 
which represents the impact of excess ADA on 
the PK assay. 

Recently, novel biotherapeutics including 
bispecific mAbs, multispecific fusion proteins 
and mAbs conjugated with small-molecule drugs 
have entered the biopharmaceutical industry 
[28–30]. These novel constructs pose unique bio-
analytical challenges. For instance, the nonself 
designs in these novel constructs and their com-
plex mechanisms of action that involve bispecific 
molecular features, or involve both the small- 
and large-molecule components, pose increased 
immunogenicity risk. For instance, a potential 
exists for these product to have an increased 
immunogenicity risk attributed to their novel 
nonself design and complex mechanisms of 
action involve bispecific molecular features 
or involve both the small- and large-molecule 
components in the case of ADCs. A paradigm 
change in bioanalytical approaches is needed in 
terms of methodologies to deploy and address 
the complexity of mechanisms of action. A suc-
cessful bioanalytical strategy will need to con-
sider multiple assays to address distinct com-
ponents of these novel constructs for epitope 
mapping of potential new nontolerant regions 
in the sequence-like sites where the linkers con-
nect with conjugates such as toxins, peptides 
and so on. Extensive effort should be dedicated 
to thorough evaluations of potential interfering 
factors, such as ADA against or circulating tar-
gets for each structural component of the novel 
constructs. Designing fit-for-purpose method 
validation approach is imperative for efficient 
deployment of high performing assays support-
ing clinical and preclinical studies. [31,32].

Currently, there is no industry consensus or 
regulatory guidance regarding how to evaluate 
the impact of ADA on PK assays during assay 
validation. However, companies developing 
large-molecule bioanalytical methods should 
investigate ADA impact on PK bioanalytical 
assays during method validation. In principle, 
the fact that an ADA interferes with the PK assay 
would suggest that the PK assay reagents may 
not interact with the drug molecule in complex 
with the ADA, or interact with lower sensitivity. 
A quantitative understanding of this interaction 
has potential impact on PK data interpretations. 
The ADA impact should be assessed using the 
most appropriate surrogate ADA and perform-
ing relevant reagent-binding characterization. 
To enable the selection of the most relevant and 
appropriate positive controls, a wide range of 
positive controls that reflect both anti-idiotype 
and antiframework reactivity, both low- and 
high-affinity antibodies and with polyclonal 

Target

Target

Anti-id Ab

Anti-id Ab

Anti-Fc Ab #2

Anti-Fc Ab #1

Total assay:
ADA or

target-bound assay

Free assay:
unbound

drug assay

Figure 1. PK assay formats for quantification of uncomplexed and total 
biotherapeutics. 
Ab: Antibody; ADA: Anti-drug antibody; id: Idiotipic.
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versus monoclonal specificity, should be consid-
ered during PK assay validation. A limitation of 
this approach, however, is that the interference 
will depend on the characteristics of the poly-
clonal ADA response, including the immuno-
dominant epitope, which might be different in 
human subjects compared with the polyclonal 
standard. The in vitro evaluation may therefore 
not replicate ADA effects on drug disposition 
and clearance. For the bivalent or multivalent 
novel constructs, relevant controls against each 
functional domain are also needed during 
PK assay development for testing the relevant 
interference to each component. 

However, given the complexity of the 
dynamic binding equilibrium occurring in the 
body, and multiple sources of perturbation of the 
equilibrium during bioanalysis, it is clear that 
ex vivo measured concentration of the particular 
forms of interest (uncomplexed, complexed or 
total drug) may differ from the actual in vivo 
concentration. To fully understand the differ-
ences between ex vivo and in vivo concentra-
tion, further experimental investigations may 
be necessary. 

Additional challenges in evaluating the influ-
ence of ADA on PK assay remain, besides the 
potential for the lack of a relevant surrogate ADA 
to serve as a positive control. Such as: the cap-
ture reagent may compete with the ADA in an 
immune complex leading to the dissociation of 
the ADA–drug complex and an overestimate of 
uncomplexed drug concentration; and the assay 
incubation time and sample dilution procedures 
may also impact the complex stability. Therefore, 
early assessments using proper tools would help 
to understand the reported concentration data 
in terms of the uncomplexed drug, and facilitate 
appropriate use of the data by PK scientists in 
subsequent data analyses. 

Immunogenicity: an important factor 
in clinical study & beyond
Immunogenicity data are collected from study 
subjects at multiple time points over the course 
of a study. Each of the study samples is evaluated 
for the presence of ADA. Typically, the sample 
collection schedule is designed with the consid-
eration of the natural time course of an immune 
response, in addition to the logistics of study 
visits for other safety assessments. Because the 
IgM peaks at approximately 2 weeks and IgG 
at approximately 4 weeks after dose administra-
tion, 2- and 4-week postdose are two early time 
points commonly included. While the sampling 

frequency beyond a month is more variable 
across programs, quarterly scheduled assessment 
of ADA within the first year of treatment would 
provide useful insight into the immunogenic-
ity profile of the product of interest. Although 
data interpretation can be aided by measuring 
both ADA and PK from the same time point, as 
mentioned previously, it would be important to 
understand the impact excess levels that either 
one has on their accurate measurement within 
their respective LBAs. 

Because of the heterogeneity of ADA induced 
by the treatment of biotherapeutics, clinical 
impacts of ADA may vary widely and may 
require multiple assays to characterize. Figure 2 
illustrated the heterogeneity with two classes 
of biotherapeutics, namely: mAbs and some 
enzyme-replacement therapeutic agents that rely 
on receptor-mediated cellular uptake to reach 
the target action site 

In practice, such complex pictures of 
immunogenicity are often presented in a sim-
plified format, such as a qualitative determina-
tion of positive or negative ADA, which is fre-
quently accompanied by an inconclusive impact 
assessment. Therefore, further characterization 
of the magnitude of ADA, its isotype depict-
ing its maturity, dissociation and association 
rates defining its affinity, and time of its onset 
can all be extremely helpful, not only for the 
interpretation of clinical outcome data, but 
also for the immune monitoring and manage-
ment of patients who developed immunogenic-
ity upon treatment. For instance, in the case 
of products with high immunogenic potential, 

Recombinant
therapeutic

proteins

• Neutralization of regions in protein that are required
  for receptor-mediated cellular uptake
• Outcome: lack of efficacy, for example,
  enzyme-replacement therapy 

Monoclonal
antibodies

• Neutralization of target through Fab/CDR masking
• Neutralization of ADCC by FcγR binding
• Binding to noncritical regions where the outcome
  is no impact on function or disposition

Figure 2. Heterogeneity of anti-drug antibody response and its impact on 
different modalities of biotherapeutics. 
ADCC: Antibody-dependent cell cytotoxicity; CDR: Complementarity-determining 
region.
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such as enzyme replacement therapeutic agents, 
immune-tolerizing regimens [33] are being 
explored or employed to maximize the treat-
ment benefits in patients. In the case of anti-
TNF mAbs, the development of ADA has been 
associated with the loss of efficacy, which led to 
either discontinuation of treatment or the switch 
to a different biotherapeutic agent [34–36].

Approaches used to evaluate impacts 
of ADA on PK, PD & efficacy 
To assess the clinical impact of ADA, the timing 
of clinical assessment (e.g., PK, PD, efficacy and 
safety) in relation to the overall ADA sampling 
schedule is an important factor to consider at 
the stage of protocol design. In the premarketing 
clinical trials, the evidences of effectiveness are 
primarily based on the efficacy data collected at 
one particular time point defined for evaluating 
the primary endpoint, or in some cases at addi-
tional time points defined for evaluating the co-
primary endpoint or the secondary endpoint(s). 
As such, the most common approach to assess 
the impact of ADA formation on efficacy is com-
paring the efficacy results in the subgroup with 
positive ADA (ADA+) to the subgroup with neg-
ative ADA (ADA-) [9]. For subgrouping the ADA 
status, it is appropriate to consider the overall 
ADA status throughout the study, including 
the time of the primary endpoint evaluation, 
because ADA+ observed at earlier time points 
prior to the time of the efficacy assessment can 
have impact on the overall efficacy. Therefore, 
a common practice is to derive one single ADA 
status from results of multiple ADA samples 
where a subject is deemed ADA positive when 
at least one of the ADA samples is found to be 
positive for ADA [9]. Similarly, the comparison 
between subgroups of ADA+ and ADA- subjects 
is the most common approach used to evalu-
ate the impact of ADA on PK, PD and safety. 
There are caveats to this approach, as a transient 
ADA response might not be strong enough to 
impact efficacy, the magnitude of the response 
might be low; even if qualitative ADA result was 
positive, S/N or titer might be too insignificant 
[37,38]. Additionally, impact of ADA titers on PK, 
PD, safety and efficacy can also be considered. 
Evaluation of these endpoints in ADA+ subjects 
with titers above and below the median is one 
such approach. Given immunogenicity assays 
typically quantify the ADA titer in each sample 
to draw a conclusion on its categorical ADA 
status, the ADA titer data would logically be 
more informative than ADA status. However, 

ADA titer data are less commonly used for cor-
relating with PK, PD or efficacy and further 
investigations would be useful. 

However, alternate approaches can be utilized 
for evaluating the effects of ADA on PK, as PK 
measurements are often made at more than one 
time point during a trial. For some rare diseases 
where study population is limited, full PK pro-
files are collected after the first dose administra-
tion and again at steady state after multiple dose 
treatment in the pivotal trial. In such cases, a 
second approach could be conducting intra-sub-
ject comparison of PK data before and after the 
formation of ADA, in addition to the compari-
son of PK in ADA+ and ADA- subgroups. The 
current product labeling of idursulfase contains 
an example of such an approach, as it indicates 
the exposure was reduced or not measurable after 
repeated dosing. A few variations may be derived 
from this approach. For instance, the intra-sub-
ject comparison of PK data can be done based 
on the ADA titers, a continuous variable, instead 
of the dichotomous variable of ADA+ vs. ADA-. 
A more sophisticated variation of this approach, 
which demands higher intensity in data collec-
tion, is to use semi-mechanistic models that 
describe the temporal data on PK and ADA 
titers, where systemic exposure to a biothera-
peutic is considered a driving force for the pro-
duction of ADA and the ADA plays a role in the 
elimination of the drug (Figure 3). Such models 
are similar to PD-mediated or target-mediated 
disposition models, where drug exposure results 
in an increase in the production of targets, which 
then play a role in drug elimination [39,40]. 

A third approach may be considered for 
products that are indicated for the treatment 
of chronic diseases and involve a large popu-
lation in the pivotal trials, where PK samples 
are collected in sparse manner, for example, 
multiple trough samples collected over time. 
In such cases, PK properties of the product 
are commonly described using population PK 
(PopPK) modeling approach, which allows 
exploration/evaluation of the impact of intrin-
sic factors (e.g., body weight, age and sex) and 
extrinsic factors (e.g., concomitant medica-
tions) on the PK properties. These intrinsic and 
extrinsic factors are typically incorporated into 
the PopPK model as time-invariant covariate. 
Inclusion of the ADA status (ADA+ vs ADA-) 
in the PopPK analysis as a covariate is a logical 
extension of the well-established technology, 
since immunogenicity resembles an intrinsic fac-
tor reflecting the potential for an individual to 
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mount an immune response to the exogenously 
administered biotherapeutics. 

However, immunogenicity data differs 
from traditional intrinsic factors, such as body 
weight, age and sex, because normal subjects 
were ADA- at the start of the study before 
dose administration and developed ADA after 
treatment. The formation of ADA takes time, 
which can be variable from subject-to-subject 
and dependent on intrinsic biological factors. 
Therefore, treating ADA status as a time-invari-
ant covariate in the PopPK models may not be 
appropriate and can lead to underestimation 
of the magnitude of ADA impact on PK. For 
example, infliximab PopPK analysis indicated 
that ADA+ subjects had a 24% higher clearance 
than ADA- subjects [41], whereas the infliximab 
product label in the US states that ADA+ sub-
jects did not have measurable serum concentra-
tions. As demonstrated in recent literature, it is 
technically feasible to implement ADA status 
as a time-varying covariate in PopPK model-
ing [38,42]. However, challenges exist in terms of 
assigning which PK samples are associated with 
positive ADA. This is because blood sampling 
for immunogenicity determinations is more 
sparse than blood sampling for PK evaluations 
in typical study designs; as such PK samples at 
some time points may not have accompanying 
ADA data to confirm the assignment of ADA 
status. Adopting a strategy to collect simultane-
ous samples for both PK and ADA assay may 
enable the use of ADA status as a time-varying 
covariate in PopPK analysis. However, a poten-
tial hindrance to this approach is the presence 
of high biotherapeutic concentration that can 
interfere with ADA detection/determination due 
to technical limitations of LBA [43].

Another more challenging issue with using 
PopPK approach is illustrated in the example 
of ADA formation rendering infliximab-treated 
subjects with no measurable infliximab serum 
concentration. When concentrations are not 
measurable or below the LLOQ of the LBA, 
they are traditionally set to zero value. Because 
PK data are customarily log-transformed for the 
PopPK modeling analysis, PK data points with 
zero values are customarily omitted in the ana
lysis datasets with the exception of some cases 
where the first sample falling below the LLOQ 
was set to half of LLOQ. Therefore, besides 
addressing the issue of capturing the timing of 
ADA formation with simultaneous measure-
ment of PK and ADA, technical improvements 
in PopPK modeling are probably required to face 

the scenario where immunogenicity reduces drug 
concentrations to not detectable/quantifiable.

In summary, a wide range of methods are 
available and/or have been applied to evaluate 
the impact of immunogenicity in preclinical 
and clinical studies. The choice of methods may 
depend on the study design with respect to immu-
nogenicity sampling, PK sampling and clinical 
assessments. Depending on the data availability 
and the understanding of the pharmacology, 
model-based analysis may be feasible; however, 
results should be interpreted with an understand-
ing of the potential methodological limitations. 
To conclude, the field of biotherapeutic develop-
ment needs revisiting, related to the development 
and validation of PK assays, especially in the face 
of newer impediments such as innovative con-
structs. Such challenges have increased the risk 
of factors that can confound the PK estimations. 
Immunogenicity to biotherapeutics is one of the 
most obvious factors that needs to be integrated 
into the biotherapeutics development strategy. 
Specifically, the characterization of immune 
response for titers/magnitude, understanding 
epitope specificity, and evaluating the impact on 
drug exposures at early and late stage of immune 
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maturity can aid in PK/PD estimate assessments 
and for future study designs. With the increase in 
innovative constructs, the need for improved ana-
lytical assays and better interpretative models will 
also increase. This review provides an overview 
of the gaps and our insights on potential means 
to address them for successful development of 
biotherapeutics.

Future perspective
The understanding of impact of immunogenic-
ity on drug levels, exposure and efficacy can be 
considerably enhanced with the advent of inno-
vative LBA that use well-characterized antibody 
clones, platforms with improved drug tolerance 
and statistical models with an ability to predict 
immunogenicity and its outcome much before 
the onset of such a response. A prospective 
evaluation of the LBA assays for their ability to 
capture the bioactive drug would enable a more 
accurate estimation of drug exposure and effi-
cacy. The limitations associated with interfering 

factors in LBA might be overcome by employing 
assay platforms such as high-throughput micro
fluidics, predictive integrated PK, ADA and PD 
models, eliminating the need for bioanalytical 
assessments. 
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Executive summary

�� Assessment of PK and PD properties requires good understanding of the mechanisms of action and PK dispositions as well as 
thoughtful design of bioanalytical methods.

�� Immunogenicity is best determined through controlled clinical trials. Immunogenicity assays should be robust, sensitive, specific and 
validated. Furthermore, assays should be able to tolerate the drug concentrations expected during treatment. 

�� The quality of bioanalytical data generated by anti-drug antibody and PK assays relies on a careful consideration of the fit-for-purpose 
assay design and thoughtful method validation. 

�� Evaluation of PK and immunogenicity of novel modalities with multiple epitope specificities will require multiple assays for assessment 
of individual components.

�� The use of anti-drug antibody titer data, instead of categorical anti-drug antibody status, and the use of model-based analysis 
(e.g., population PK analysis) are alternative approaches that are less mature.
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Research Article

GLP-1 is part of a family of incretin hormone 
peptides. It is secreted from endocrine cells 
located in the intestinal mucosa in response to 
the presence of nutrients in the gut lumen [1]. It 
is a potent regulator of glucose homeostasis by 
enhancing glucose-dependent insulin secretion 
[2]. GLP-1 is derived from the proglucagon gene, 
which is post-translationally processed in a tis-
sue-specific manner into several different peptide 
products including: glucagon, GRPP, major pro-
glucagon fragment, glicentin, oxyntomodulin, 
GLP-1, GLP-2, IP-1 and IP-2 [3,4].Once in circu-
lation, two NH2-terminal amino acids of active 
GLP-1 are rapidly cleaved by dipeptidyl peptidase 
IV (DPP-IV) into inactive GLP-1, resulting in 
a half-life of approximately 1–2 min for active 
GLP-1 [5]. Because of their ability to extend the 
biological effects of incretin hormones such as 
GLP-1, orally-administered DPP-IV inhibitors 
have been developed and utilized in the clinic 
as a novel class of antihyperglycemic agents for 
the treatment of Type 2 diabetes [3].

Measuring endogenous levels of incretin 
hormones like GLP-1 is critical for the develop-
ment of antidiabetic compounds. However, the 
assays employed in the measurement of these 
molecules often have analytical issues [3,6]. For 
instance, GLP-1 is present at very low concen-
trations (<10 pM) in human plasma and, is a 
hydrophobic peptide with a very short half-life in 

circulation, both of which contribute to sensitivity 
and stability challenges [7]. There are currently a 
few immuno-based assays for the measurement of 
incretins. However, because of the complexity of 
proglucagon biology as referenced above, the selec-
tivity of these methods has been questioned. To 
that end, here we demonstrate the development of 
an ultrasensitive, highly selective immunoaffinity 
LC–MS/MS (IA LC–MS/MS-based platform to 
enrich and measure endogenous levels of active 
(7–36 amide) and inactive (9–36 amide) GLP-1 
in human clinical plasma samples.

Materials & methods
�� Reference materials

Human active GLP-1 (7–36) amide and human 
inactive GLP-1 (9–36) amide standards were 
purchased from Anaspec (Fremont, CA, USA). 
The IS, stable isotope-labeled GLP-1 (7–36) 
amide and inactive GLP-1 (9–36) amide, were 
obtained from Sigma-Aldrich (St. Louis, MO, 
USA), with each IS containing one phenyl
alanine and one leucine, labeled with 13C and 
15N, resulting in a mass shift of 16 amu, which 
provides adequate separation (+4 amu at a +4 
charge state) from the unlabeled molecules.

�� Reagents
The following critical reagents were obtained 
for the development of the assay: Water and 
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acetonitrile were purchased from Honeywell 
Burdick & Jackson (Morris Township, NJ, 
USA), Formic acid from Thermo Pierce Scientific 
(Rockford, IL, USA), RIPA buffer from EMD 
Millipore (Billerica, MA, USA), Tosylactivated 
M-280 Dynabeads from Life Sciences (Grand 
Island, NY, USA), anti-GLP1 monoclonal anti-
bodies (HYB147–06 and HYB147–13) purchased 
from Thermo Pierce Scientific, a rabbit polyclonal 
antibody against GLP-1 obtained from Bachem 
(King of Prussia, PA, USA) and an anti-active-
GLP1 monoclonal antibody (ABS033–04) from 
Enzo (Farmingdale, NY, USA).

�� Assay procedure
Anti-GLP1 monoclonal antibodies were con-
jugated to Tosylactivated M-280 Dynabeads 
according to the manufacturers’ instructions and 
stored at 4°C until ready for use. All plasma sam-
ples were collected in P700 or P800 vacutainer 
tubes (BD Biosciences, CA, USA), immediately 
processed for plasma and stored at -80°C. Sam-
ples were thawed on ice prior to analysis. Samples 
were transferred to a 2 ml Protein LoBind Tube 
(Eppendorf ®) and the volume was adjusted to 
1 ml with 1×RIPA buffer. IS was added to a final 
concentration of 40 pM in sample. Anti-GLP1 
antibodies (HYB147–06 and HYB147–13) con-
jugated beads were mixed in equal volumes, and 
50 µl of mixed beads were added to each plasma 
sample. Samples were incubated for 1 h at room 
temperature with end-over-end rotation. After 
the incubation and with the aid of a magnetic 
device, the beads were washed twice with 2 ml 
of 1×RIPA buffer and twice with 2 ml of water. 
GLP-1 peptides bound to the beads were eluted 
with 30 µl of elution buffer (400 µg/ml BSA in 
20% acetic acid, 10% methanol) for 15 min at 
room temperature with shaking. Eluates were 
spun over an Ultrafree®-MC 0.22  µm PVDF 
filter (Millipore, MA, USA) and analyzed by 
LC–MS/MS (Figure 1).

�� Chromatography
Chromatographic separation was performed 
using a nanoACQUITY UPLC® system (Waters, 
Hertfordshire, UK). The analytical column was 
a TRIZAIC nanoTile™ C18 85µm × 100 mm 
column with a 1.8 µm particle size and onboard 
trap, and maintained at 45°C. Mobile phase A 
consisted of water with 0.1% formic acid and 
mobile phase B consisted of acetonitrile with 
0.1% formic acid. A sample volume of 2 µl was 
injected and loaded for 2 min onto the trap-
ping column at a flow rate of 8 µl/min 15% B. 

Following the trapping cycle the elution gradient 
occurs as follows: 15% B at t0, ramp to 45% B 
from t0 to t3.0, ramp to 60% B from t3.0 to t5.0, 
ramp to 95% B from t5.0 to t7.0and hold for 2 min 
before returning to 15% B at a constant flow 
rate of 1 µl/min. The retention time for active 
GLP-1 and IS was approximately 4.47  min, 
and the retention time for inactive GLP-1 and 
IS was approximately 4.64 min (Figure 2). The 
cycle time of the method and injection was 
approximately 15 min per sample. 

�� MS
The mass detector was a Waters Xevo™ TQ-S 
triple quadrupole mass spectrometer fitted with 
a TRIZAIC nanoTile source (Waters). The mass 
spectrometer was operated in MRM mode. Sam-
ples were ionized via ESI in positive mode. The 
source was set at a temperature of 120°C. Ion-
ization source parameters were as follows: capil-
lary voltage 3.0 kV, cone 40.00 V, source offset 
60.0 V. Gas settings were as follows: nanoflow 
gas 0.70 bar, collision gas flow 0.15 ml/min, neb-
uliser gas flow 7.00 bar. Dwell time per transition 
was set to auto (42 ms). Resolution settings were 
low mass 2.8 and high mass 15.0 for both Q1 
and Q3. The following MRM transitions were 
monitored with collision energies given in paren-
thesis: active GLP-1 m/z 825.4→946.3 (30 V); 
active GLP-1 IS m/z 829.5→946.3 (30 V); inac-
tive GLP-1 m/z 773.3→852.5 (21 V); inactive 
GLP-1 IS m/z 777.3→857.6 (21 V). Data was 
processed using TargetLynx™ software (Waters). 
A calibration curve was generated for both 
active and inactive GLP-1, each run by plotting 
response (defined in TargetLynx software as the 
peak area ratio of analyte to IS multiplied by 
the designated calibration concentration for each 
point) versus the concentration of analyte (pM). 
Concentrations of unknown samples were plot-
ted against the known standard curve to deter-
mine nominal concentrations.

�� Method optimization
Four antibodies were evaluated for use in the 
immunoprecipitation (IP) step of the assay. 
The two mouse monoclonals (HYB147–06 and 
HYB147–13) along with the rabbit polyclonal, 
bind the two peptides of interest, active GLP-1 
(7–36) and inactive GLP-1 (9–36), while the 
fourth antibody tested (ABS033–04) only binds 
the free N-terminus of GLP-1 (7–36). Anti-
body selection was made based on the Octet® 
RED96 System platform (Pall Corporation, 
NY, USA). The Octet Red system uses bio-layer 

Key Terms

Active GLP-1: Predominant 
circulating biologically active 
form of GLP-1 [GLP-1(7–36) 
amide] associated with insulin 
secretion and glucagon 
inhibition.

Incretins: Gastrointestinal 
hormones that regulate insulin 
release as a result of food 
uptake.

Immunoaffinity 
LC–MS/MS: Using an antibody 
to enrich a target analyte from a 
complex sample matrix prior to 
MS analysis. 

Fit-for-purpose validation: 
Efficient validation approach in 
which an assay is validated based 
on how the data will be 
generated and the intended 
application. 
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interferometry, a label-free biosensor technol-
ogy that gives real-time information regarding 
protein interactions in a fluidics-free instrument 
environment. Briefly, streptavidin-coated tips 
that house the biosensor required for this mea-
surement, are dipped into wells containing the 
biotinylated analyte of interest (biotin-GLP-1 
7–36, and biotin-GLP-1 9–36) during the ‘load’ 
step. After a baseline equilibration step, the tips 
are dipped into wells containing the desired anti-
body to measure the association rate. Finally, the 
dissociation rate can be measured by dipping the 
tips into a buffer of choice. For the final step we 

chose our IP wash buffers (1×RIPA and H2O) to 
confirm a lack of dissociation during these wash 
steps, of which there was none.

�� Assay validation
The following assay performance characteris-
tics were assessed as part of the fit-for-purpose 
validation of active and inactive GLP-1 assay: 
inter-assay precision, sensitivity, spike recovery, 
dilution linearity, absolute recovery, matrix 
effect, IP efficiency and food effect. Three 
QC samples with varying active and inactive 
GLP-1 levels were prepared for assay validation 
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Figure 1. Immunoaffinity-LC–MS/MS-based assay platform to measure endogenous 
levels of active (7–36 amide) and inactive (9–36 amide) GLP-1. 
mAb: Monoclonal antibody; RT: Retention time.
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purposes: low, medium and high. The QC 
samples were prepared using pooled plasma col-
lected in p700 tubes from healthy volunteers. 
GLP-1 was spiked into the medium and high 
QC samples to achieve the desired levels. Inter-
assay precision was determined by measuring 
the QC samples over n = 4 runs. Sensitivity, 
as defined by LOQ, was calculated based on 
precision and bias of the lowest standard con-
centration. Spike recovery was determined by 
spiking two levels of active and inactive GLP-1 
(50 pM and 200 pM) into plasma samples and 
comparing the GLP-1 concentrations in spiked 
samples versus the unspiked samples. Total 
assay recovery was determined by comparing 
the IS peak areas in samples spiked with IS at 
the beginning of the assay procedure versus the 
peak areas of IS in buffer. Matrix effect was 
determined by spiking IS into the elution buf-
fer of processed plasma sample that contained 
no IS initially. The IS peak areas of this sample 
were compared with the IS peak areas found in 

the elution solution containing IS. IP efficiency 
was determined by comparing the IS peak areas 
in samples spiked with IS prior to the IP step 
versus samples spiked with IS after the IP step. 
Dilution linearity was measured by serially 
diluting the Medium QC sample with 1×RIPA 
buffer from 1:2 to 1:32.

�� Clinical assay application
To demonstrate the utility of this method in the 
clinical setting, we chose to measure samples 
from a food effect study. GLP-1 is associated 
with appetite and satiety signaling, gastric secre-
tion inhibition and delayed gastric evacuation. 
An increase in GLP-1 release can be stimulated 
by overfeeding [8]. Food effect was assessed 
in six individuals by measuring samples col-
lected before and after a meal tolerance test. 
Specifically, subjects had their plasma drawn 
(t-10min) and were administered the test meal, 
which consisted of one can of Ensure® and one 
Power bar. They were instructed to complete 
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consumption of the entire meal within 15 min, 
while consuming the last portion of the meal 
within the last 2 min. Plasma was then collected 
after the 15 min had expired (t0min) and at the 
following intervals for the next 3 h: t10min, t15min, 
t30min, t60min, t90min, t120min and t180min. All proto-
cols underwent Ethics Committee review and 
approval, and all subjects provided informed 
consent prior to undergoing study procedures 
and activities.

Results
Two monoclonal antibodies (HYB147–06 and 
HYB147–13) with high affinity and low disso-
ciation properties were selected for the immu-
noenrichment step (Figure 2). The LOQ of the 
LC–MS/MS assay was determined to be 0.5 pM 
based on a %CV <20% and a %bias <5% of the 
lowest standard. The S/N ratio for the low QC 
was approximately 70 and 837 for active and 
inactive GLP-1, respectively. A standard curve 
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representing a range of 0.49–360 pM for both 
active and inactive GLP-1 is shown in Figure 3A, 
along with representative chromatograms from 
the low QC sample (Figure  3B). Inter-assay 
precision ranged from 6.7 to 9.2% and 9.9 to 
11.6% for active and inactive GLP-1, respectively 
(Table 1). Spike recoveries for the low and high 
spike levels were calculated to be 111 and 113% 
for active GLP-1, and 110 and 113% for inactive 
GLP-1 (Table 2).

Total assay recovery of active and inactive 
GLP-1 was determined to be 48 and 37%, 
respectively. The matrix effect for active and 
inactive GLP-1 was determined to be -36 and 
-52%, respectively. IP efficiency of active and 
inactive GLP-1 was determined to be 75 and 
76%, respectively. The assay was observed to be 
linear up to at least a 1:32 dilution (Table 3). 
Endogenous GLP-1 concentrations from 6 indi-
viduals ranged from <0.5(LOQ) to 1.5 pM for 
active, and between 0.5 and 3.9 pM for inac-
tive. The results of the food effect experiment 
are shown in Figure 4. An increase is observed 
in both active and inactive GLP-1, with a peak 
effect occurring 10  min after completion of 
the meal.

Discussion
Lack of concordance and/or standardization 
in GLP-1 measurements has been previously 
investigated [9]. Specifically, the need for an 
internationally recognized GLP-1 standard, 
as well as the importance of characterizing the 
specificity of commercially available immuno-
assays was highlighted [9]. Some of the issues 
raised were that commercially available GLP-1 
assays do not necessarily give results equal to an 

extensively documented method as developed 
by Orskov et al. [10].An extensive comparison 
of commercially available methods for detec-
tion of GLP-1 by Bak [11] highlights many of 
the challenges related to GLP-1 measurements. 
Assay sensitivity and the way it was determined 
varied depending on the vendor. Sensitivity as 
described in a commercial kit insert may be 
based on the signal of the background, sig-
nal of analyte in buffer or signal of analyte in 
sample matrix and, most likely, will not fac-
tor precision into the estimation. All nine kits 
tested had at least one of the following ana-
lytical issues: insufficient sensitivity in plasma, 
plasma interference/matrix effect or poor spike 
recovery [11]. None of the kits tested was able 
to measure spiked concentrations of active and 
inactive GLP-1 in plasma below 10 pM while 
demonstrating acceptable spike recovery (80–
120%), a clear example for the need of improved 
assay platforms to measure GLP-1 in human 
plasm [11].

To our knowledge, this is the first LC–MS/
MS assay that has been developed and vali-
dated with the required sensitivity to measure 
endogenous levels of active and inactive GLP-1 
in human plasma and it is our intention that 
this method could aid in the harmonization 
or characterization of GLP-1 assays. There are 
many components of this assay which, when 
combined, result in a highly selective and sen-
sitive tool for the analytical characterization of 
GLP-1. The three key elements that result in 
better sensitivity and selectivity are: the enrich-
ment of the analytes from a complex matrix 
through the use of monoclonal antibodies 
specific to GLP-1; the specificity afforded by 

Table 1. Inter-assay precision in human plasma.

Active GLP-1 (7–36) Inactive GLP-1 (9–36)

Low QC Medium QC High QC Low QC Medium QC High QC

Mean (pM) 1.5 55.5 110.8 3.1  55.6 110.7

%CV 9.2 6.7 8.8 9.9 11.6 11.1

N 4 4 4 4 4 4

Table 2. Spike recovery for low (50 pM) and high (100 pM) concentrations of active and inactive GLP-1 in 
control human plasma.

Active GLP-1 Inactive GLP-1

Endogenous 
concentration 
(pM)

Spiked 
concentration 
(pM)

Spike 
amount 
(pM)

Recovery 
(%)

Endogenous 
concentration 
(pM)

Spiked 
concentration 
(pM)

Spike 
amount 
(pM)

Recovery 
(%)

Low spike 1.4 57.0 50 111 3.1 57.9 50 110

High spike 1.4 114.8 100 113 3.1 116.1 100 113
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the mass spectrometer to reliably quantitate 
both active and inactive forms of GLP-1 in the 
same sample; and the sensitivity of advanced 
MS instruments to reproducibly measure the 
samples in the sub-pM range. 

The use of antibodies to enrich an ana-
lyte of interest prior to MS analysis has been 
extensively documented for a variety of appli-
cations [12–14]. Similar to immunoassays, 
IA LC–MS/MS benefits from utilizing specific 
antibodies with high association rates and low 
dissociation rates. The experiments performed 
on the Octet system confirmed the selection 
of two monoclonal antibodies based on favor-
able binding kinetics. Incubation times for the 

immunocapture step vary and are performed 
overnight in many cases. Based on the antibody 
affinity data and tight inter-assay precision we 
observed, the decision was made to perform 
the immunocapture step for 1 h, which results 
in an assay with quick turnaround time. The 
assay, including sample addition, immunocap-
ture and elution can be performed in approxi-
mately 2 h. This is a significant improvement 
considering existing total GLP-1 immunoas-
says can last up to 4 days. Beyond the relatively 
short assay time, one of our future goals is to 
automate the assay in a 96-well plate format to 
increase throughput and make the assay eas-
ily transferable to partner laboratories. After 

Table 3. Dilution linearity in human plasma.

Dilution 
factor

Active GLP-1 Inactive GLP-1

Corrected 
concentration (pM)

Change from 
undiluted (%)

Corrected 
concentration (pM)

Change from 
undiluted (%)

Undiluted 59.9 NA 64.3 NA

2 60.3 0.7 61.0 -5.2

4 60.5 1.0 65.4 1.6

8 58.1 -3.1 66.8 3.9

16 44.2 -26.3 64.6 0.5

32 49.0 -18.3 65.6 2.0
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Figure 4. GLP-1 food effect measured by immunoaffinity-LC–MS/MS. Following an 
overnight fast, subjects (n = 6) were administered a test meal (one can of Ensure® and one 
power bar) and instructed to complete consumption of the entire meal within 15 min. Plasma 
was sampled at t = -10 min (prior to meal challenge), 0, 10, 15, 30, 60, 90, 120 and 180 min 
following the completion of the meal.
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the antibody selection and conditions for 
the immunoaffinity step were optimized, the 
authors focused on adapting the method to fit 
the most sensitive robust detection platform 
available to them. In this case, we opted for 
the TRIZAIC nanoACQUITY UPLC® system 
with nanoTile™ coupled to the Xevo™  TQ-S. 
Nanoflow LC is often selected as the front end 
to provide chromatographic separation in the 
quantification of extremely low abundance 
analytes, because of the optimal ionization 
efficiency and low background. While pro-
ducing relatively clean spectra with low solvent 
background, nanoflow techniques are usually 
hampered by long gradient times and can be 
difficult to achieve consistent peak shapes and 
reduced dead-volumes, due to the very deli-
cate columns and fittings. Others have dem-
onstrated the TRIZAIC microfluidic system 
to be more robust and stable than traditional 
micro- and nano-flow separation devices [15]. 
In addition, for selected analytes, we have 
demonstrated a >60-fold increase in sensitiv-
ity with the TRIZAIC system compared with 
traditional 2.1 mm columns on traditional flow 
sources [16]. The TRIZAIC nanotile system 
proved to be relatively easy to use because of its 
plug-and-play interface. By using the trizaic tile 
with onboard trapping, we were able to keep 
our gradient times relatively short (9  min), 
while maintaining low background and great 
resolution. 

In contrast with previous immunoassays 
cited in the literature, we have demonstrated a 
robust quantitative measurement in plasma at 
the low-pM level, along with acceptable spike 
recovery (110–113%) with two different levels 
of analyte. The suboptimal analytical perfor-
mance historically associated with the majority 
of GLP-1 assays can be attributed to problems 
with immunoassays in general such as: lack of 
concordance in measurement of the same ana-
lyte via different methodologies (kits, standards 
and platforms), production of autoantibodies 
that may block the epitope on the analyte of 
interest, antireagent antibodies and the hook 
effect [17]. Based on these potential pitfalls, we 
targeted an IA LC–MS/MS method to obtain 
the specificity required for accurate measure-
ment of GLP-1. Many properties of IA LC–MS/
MS are the same as immunoassays, with the 
added benefit that a mass spectrometer provides 
an extra level of selectivity due to the specific 
precursor-product ion fragmentation pat-
terns for any given molecule and the ability to 

concentrate the sample for increased sensitivity. 
IA LC–MS/MS is also a preferred option when 
only one antibody reagent is available or mul-
tiple antibodies compete for the same epitope. 
Wolf et al. previously developed an IA LC–MS/
MS method to measure glucose-dependent insu-
linotropic peptide (GIP1–42, GIP3–42), along 
with active and inactive GLP-1 [18]. This was a 
novel assay for the time and a great early appli-
cation for IA LC–MS/MS, however, the LOQ 
of the assay (11 pM) was not low enough to reli-
ably measure endogenous levels of active GLP-1 
in human plasma. In comparison, the present 
assay is approximately 20-fold more sensitive 
(0.5 pM vs 11 pM). In addition to increased sen-
sitivity, our assay has the advantages of a shorter 
gradient time, 9 min compared with 35 min, 
increased specificity resulting from the decision 
to use monoclonal antibodies and MRM over 
polyclonal antibodies and a single quadrupole 
mass spectrometer, and finally improved chro-
matographic separation and resolution [6]. The 
precision, linearity, and spike recovery data 
presented here for active and inactive GLP-1, 
validate this method as a sensitive and specific 
platform. 

In addition to specificity and sensitivity, 
another advantage of the assay is the abil-
ity to multiplex the measurement of active 
and inactive GLP-1 from the same sample. 
This is significant if one is making decisions 
based on ratio of active to inactive or active to 
total GLP-1. This ratio has been thoroughly 
characterized in the development of DPP-IV 
inhibitors. As described earlier, active GLP-1 
is quickly cleaved by DPP-IV, resulting in the 
inactive form 9–36. Therefore, inhibition of 
DPP-IV should result in an increase of active 
GLP-1, and account for a greater percentage 
of total GLP-1 measured. This has been previ-
ously demonstrated by Herman et al. for the 
development of Januvia®, a DPP-IV inhibitor 
for the treatment of diabetes [19]. Active and 
total GLP-1 measurements, as performed by 
ELISA and radioimmunoassay, respectively, 
demonstrated a significant increase for all 
doses of sitigliptin (Januvia) over placebo 
for the active:total ratio, with no impact on 
total GLP-1 levels [19]. It is also worth noting 
that lot-to-lot variability was observed for the 
measurement of active GLP-1, an issue that 
tends to be more problematic in immunoassays 
than in LC–MS platforms. We now propose 
to use one assay to measure both GLP-1 forms 
to alleviate concerns due to differences in 
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sample handling, since the same procedure 
and reagents will be used for both measure-
ments. We acknowledge that the 1 ml plasma 
requirement is a relatively large volume com-
pared with other biomarker assays regardless 
of platform. We have demonstrated that less 
volume may be used if levels are not expected 
in the lower range of the assay. If 1  ml of 
sample is not attainable, IA LC–MS/MS can 
also be used to validate or invalidate existing 
immunoassays that require less volume. This 
comparison model is especially advantageous 
when there are questions regarding the speci-
ficity of a given immunoassay. For any given 
analyte, immunoassays may be preferred due 
to higher throughput, smaller sample volume 
requirements or better sensitivity, in which 
case the IA LC–MS/MS assay can aid to build 
confidence and reinforce the quality of data 
provided by immunoassays. Cross-validating 
assays on multiple platforms is a growing trend 
that has been presented more and more in the 
literature [20,21]. In the end, the preference of 
one platform over the other will be determined 
by the question of how the data will be used.

In summary, we have presented a specific and 
sensitive method for the quantitation of active 
and inactive GLP-1 in human plasma using 
IA LC–MS/MS. The sensitivity of this assay 
is better than any other LC–MS/MS GLP-1 
measurement and many commercially avail-
able immunoassays. This important analytical 
tool could be used to qualify and/or harmo-
nize the different immunoassays used for the 
quantitation of GLP-1.  

Future perspective
The measurement of proteins and peptides by 
MS-based methods has become an important 
tool in the analytical laboratory and will con-
tinue to grow over the next few years. Immuno-
assays often recognize a mixture of the protein 
or peptide of interest that may include frag-
ments and/or post-translational modifications. 
This may lead to less selective methods for 
the ‘same’ analytes, yielding different results 

when different antibody pairs are used. This, in 
turn, may lead to paramount standardization 
and harmonization efforts that could be very 
involved, as it was the case with the cardiac 
troponin assays. MS methods for the quanti-
tation for proteins/peptides are more selective 
and may not suffer from this lack of agreement 
between methods. This has been the thought 
for many years. However, the technology did 
not have the required sensitivity to measure 
many analytes of interest. Improved MS tech-
nologies, such as the one presented here will 
enable scientists to measure low abundant ana-
lytes with exquisite sensitivity and specificity. 
These methods may be first used as reference 
methods and will eventually become more 
mainstream. 
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Executive summary

�� The measurement of incretin hormones, such as GLP-1, is critical in the development of antidiabetic compounds.

�� There are multiple immuno-based assays for the measurement of GLP-1. However, because of the complexity of proglucagon biology, 
the selectivity of these methods is often questioned.

�� We have developed an ultrasensitive, highly selective immunoaffinity-LC–MS/MS assay capable of measuring endogenous levels of 
active (7–36 amide) and inactive (9–36 amide) GLP-1 in human plasma samples.
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Invasive, site-specific metabolite information could be better obtained from 
tissues. Hence, highly sensitive mass spectrometry-based metabolomics coupled 
with separation techniques are increasingly in demand in clinical research for 
tissue metabolomics application. Applying these techniques to nontargeted tissue 
metabolomics provides identification of distinct metabolites. These findings could 
help us to understand alterations at the molecular level, which can also be applied in 
clinical practice as screening markers for early disease diagnosis. However, tissues as 
solid and heterogeneous samples pose an additional analytical challenge that should 
be considered in obtaining broad, reproducible and representative analytical profiles. 
This manuscript summarizes the state of the art in tissue (human and animal) treatment 
(quenching, homogenization and extraction) for nontargeted metabolomics with 
mass spectrometry.

Background
The field of metabolomics is an emerging and 
promising omic science in systems biology, 
which aims to depict the metabolic profile 
in complex systems through the combina-
tion of data-rich high-throughput analytical 
techniques and multivariate data anal-
ysis. Metabolomics investigates single com-
ponent effects on a biological system and 
offers a holistic approach in the exploration 
of the molecular details of multiple factors 
on an entire biological organism. Metabolo-
mics techniques allow for a high-throughput 
analysis of small molecules in biofluids and 
tissues, giving metabolic profiles of the end 
products. Comparison of metabolic profiles 
from different phenotypes can be supportive 
in the identification of metabolic changes and 
as well as helping to understand the molecu-
lar mechanism, integrated biochemical path-
ways and disease progression [1–3]. There are 
many metabolites in biological systems that 
change much faster than nucleic acids or pro-
teins. Hence metabolites seem to depict more 
satisfactory changes in biochemical effects in 
any organism, representing a closer approach 
to determine biological end points than 

genomics, transcriptomics and proteomics. 
Two different approaches have arisen in this 
field: a targeted and nontargeted approach. 
The first approach can be defined as the tar-
geted measurement of a selection of metab-
olites known to be involved in a given bio-
chemical pathway that reflects the dynamic 
response to genetic as well as physiological 
modifications or the changes due to external 
stimuli in unicellular to multicellular bio-
logical systems [4,5]. On the other hand, the 
nontargeted approach is the global unbiased 
analysis of all small molecules that collec-
tively constitute the entire metabolome and 
serves as a direct signature of biochemical 
activity in any sample of interest, giving more 
information than the targeted approach as 
it analyses all possible metabolites [6,7]. The 
nontargeted approach has been applied to 
different biofluids (e.g., urine, plasma/serum) 
and tissues [8–13]. Even though collection of 
tissue is invasive, tissue metabolomics has 
many advantages over biofluids. Metabolo-
mics modifications and upstream regulations 
are first seen in tissue. Moreover, the pairwise 
comparison of tissue taken from diseased 
and nondiseased regions could reflect the 
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Figure 1. General workflow involved in nontargeted tissue metabolomics.
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interactions despite any individual differences. Global 
determination of metabolite concentrations in the tis-
sues provides novel anatomical aspects of pathological 
conditions that cannot be obtained from target-specific 
fluid measurements. Providing more relevant informa-
tion than systematic biofluids, tissue metabolomics has 
a greater importance in biomedical research. So far, 
many studies have already shown the applicability on 
a variety of animal tissues for metabolomics including 
liver, kidney, lung, brain and spleen from both rodents 
and other models [14–17]. Tissue metabolomics has been 
facilitated by advances in NMR and high-resolution 
MS. Although NMR is characterized by high-technical 
reproducibility, fast analysis and robust quantification 
of compounds, the intrinsic limitations of NMR are its 
poor sensitivity and signal overlap. The high-resolution 
magic angle spinning NMR spectroscopy is an ideal 

technique for the investigation of intact tissue speci-
mens (10–50 mg) and permits spectra to be obtained 
with a resolution comparable to that observed in solu-
tion in a time that does not exceed 0.5 h for a rou-
tine analysis. However, poor sensitivity hampers the 
detection of low concentrations of metabolites, which 
could be important chemical biomarkers. By contrast, 
MS-based nontargeted metabolomics with separation 
techniques, such as LC, GC and CE, provides higher 
sensitivity and molecular specificity [15]. For nontar-
geted tissue metabolomics analysis, separation with LC 
coupled to MS enables the most comprehensive metab-
olite coverage achievable to date but there is no single 
analytical technique that covers the entire spectrum 
of the metabolome. Thus multiplatform approaches 
including different separation techniques or even direct 
infusion and MS are all being employed in order to 
extend metabolite coverage [10,16]. Recent advances by 
coupling GC (GC×GC) and MALDI-TOF-MS have 
also been applied in nontargeted analysis [18,19]. 
The use of GC×GC has been shown to produce com-
prehensive enhanced metabolic coverage compared 
with conventional GC–MS and NMR [20,21]. One of 
the critical steps in nontargeted metabolomics studies 
is the structural characterization of identified metab-
olites especially when the compound of interest is of 
low concentration. A recent article has been published 

Key terms

Multivariate data analysis: It involves the observation 
and analysis of more than one statistical outcome variable 
at a time, taking into account the effects of all variables on 
the responses of interest.

Nontargeted analysis: Nontargeted metabolomics is 
the analysis of all possible small molecules present in a 
biological system for a particular physiological state in 
response to external or internal stimuli.
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suggesting a workflow to overcome this limitation and 
increase the number of identified metabolites using 
LC–MS nontargeted metabolomics applied to brain tis-

sue, liver and astrocytes, as well as nerve tissue [22]. The 
global metabolomics study involves differential com-
parison of a healthy subject or treatment group with-

Table 1. Mass spectrometry-based application of nontargeted metabolite analysis to different tissue types along with 
the study purpose and sample pretreatment: tissue types in alphabetical order (A–B).

Tissue type Techniques Purpose of the study Sample preparation Ref.

Adipose CE–MS Understanding the mechanism 
of visceral fat accumulation and 
metabolic syndrome between post- and 
pre-menopausal women

Addition of IS containing methanol in frozen 
adipose tissue, homogenization, addition 
of water and chloroform (500, 200, 500 μl), 
centrifugation, filtration by 5 kDa millipore 
filter, lyophilization, resuspend in water before 
analysis

[51]

Adipose LC–MS To identify pathways activated by 
feed restriction and to understand 
the contribution of insulin in chicken 
adipose physiology

Tissue homogenizing in liquid N2 cooled 
mortar and pestle, metabolite extraction with 
chilled methanol containing IS, centrifugation, 
injection of supernatant

[52]

Bladder LC–MS Identification of bladder cancer 
associated metabolic signature 
and disclosing the precarcinogenic 
metabolic process

Tissue homogenization in ice cold 80% 
methanol containing IS, metabolite extraction 
with ice cold methanol:chloroform:water, 
deproteinization, drying the extract, 
resuspending in solvent before injection

[53]

Bone GC–MS Identification of metabolic pathways 
involved in the growth of bone 
metastases in order to improve cancer 
prognosis

Tissue metabolite extraction with 
water:methanol:chloroform containing IS using 
bead mill, extract drying and derivatization 
prior to injection

[54]

Brain GC–MS Comprehensively evaluating therapeutic 
effects of antidepressants in a 
depression rat model

Tissue homogenization in water, addition of 
solvents, IS and derivatizing reagent in the 
supernatant, ultrasonication, addition of 
chloroform in the extract, adjusting the pH, 
repeating the derivatization process, drying 
chloroform layer with anhydrous sodium sulfate 
for subsequent GC–MS analysis

[55]

Brain UHPLC–MS To assess the relative analytical power 
and potential usefulness of UHPLC–MS 
for studying the global polar metabolite 
changes in subjects with Alzheimer’s 
disease

Frozen tissue samples were lyophilized and 
milled to a fine powder, addition of 50% 
methanol, mixing, sonication, deproteinization 
by centrifugation, collection of supernatant for 
injection

[56]

Brain LC–MS Investigating the link between 
histology and neural metabolites in 
rodent models of HIV infection

Tissue homogenization in methanol, 
addition of IS after serial dilution with water, 
deproteinization, centrifugation, supernatant 
collection, drying, reconstituting in 50% 
acetonitrile, diluting 10,000-times before 
injection

[57]

Brain LC–MS Metabolomics study to observe the 
biochemical mechanism of venlafaxine 
in brain tissues of rat models of 
depression

Tissue homogenization in ice cold methanol, 
centrifugation, supernatant collection, drying 
reconstitution in water, addition of chloroform, 
centrifugation, injecting upper aqueous layer

[58]

Brain LC–MS Global metabolomics analysis of 
GDE1 (-/-) mice

Tissue homogenization with cold 80% 
methanol, sonication and centrifugation. 
Re-extracting the pellet, drying the combined 
extracts and reconstitution in water before 
analysis

[59]

IS: Internal standard; UHPLC: Ultrahigh-pressure liquid chromatography.
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Figure 2. Percentage pie chart based on publications of different tissue types, searching keywords 
‘un/nontargeted metabolomics, fingerprinting, human and animal tissue’ in NCBI PubMed.
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out a prior knowledge of any metabolites. Therefore, 
possible applications of the nontargeted tissue metab-
olomics approach to a variety of tissues was applied in 
order to discover clinically relevant biomarkers using 
different tissue types (lung, liver, brain, pancreatic, 
adipose, heart and kidney) to understanding disease 
and other biological processes, the effect of nutrition 
on health, the understanding the mechanisms of drug 
action, metabolism or toxicity among others [10,23–29]. 
Researchers are also focusing on whole organ or animal 
profiling using a nontargeted approach [30].

The aim of this review is to discuss the different 
challenges in the MS-based nontargeted tissue metab-
olomics approach focusing on sample preparation pro-
tocols, discussing different separation techniques and 
their application to different tissue types to date.

Major challenges in tissue sample 
preparation
Tissue metabolites provide valuable insights into the 
biochemistry of disease, toxicity and response to drug 

administration and normal physiological characteris-
tics because they contain an extraordinary amount of 
biological information, written in the language of cells, 
genes, proteins and metabolites [4,31,32]. However, sam-
ple preparation remains a crucial variable in obtaining 
the most accurate information. The choice of sam-
ple pretreatment methods, which is an essential step, 
affects not only the molecular features but also the bio-
logical interpretation of the obtained chromatographic 
data. The workflow describing nontargeted tissue 
metabolomics is presented in Figure 1. The most com-
mon steps involved in all tissue fingerprinting comprise 
homogenization and metabolite extraction, in order to 
measure multiple small molecules to produce unique 
metabolic profiles.

Origin-based tissue homogeneity
Compared to biofluids, tissue collection generates 
intrinsic challenges in nontargeted metabolomics. Mus-
cle or fat samples may be expected to be quite homog-
enous but most other tissue types are not; the liver has 
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five different topographic lobes and they have different 
levels of enzymatic systems, the kidney is another well-
known heterogenic tissue type with medulla, cortex and 
multiple cell types with different structure and function 
throughout the nephron, and the brain is even more 
complicated [33]. Tissue from such organs could give 
rise to region-specific results thus the region should be 
well-defined before analysis is undertaken. Otherwise, 
the result may be erroneous and misleading. In cancer 
biology, tumors are being examined using a nontargeted 
approach in order to understand the different metabo-
lites between tumorous and nontumorous region [34]. 
Although tumor tissue should be composed of the same 
cell type, regional differences are still present [35]. For 
example, in the tumor itself there may be regions that 
are well oxygenated, where as other regions that are not. 
Thus, during sample collection care should be taken to 
collect a sample from the same region for each sampling 
to avoid factors such as biological variability. Alterna-
tively, whole tissue or cross-sectional tissue analysis can 
help in overcoming this inconsistency.

Tissue collection & quenching metabolism
Generally tissue samples are collected under anesthesia 
in a randomized manner following ethics guidelines. In 
order to avoid contamination from the anesthetic drug 
or blood, after collection the sample is usually thor-
oughly washed with deionized water or buffer [10,22,36]. 
Very interesting research has been published recently, 
where the effect of blood on liver analysis was evalu-
ated by comparing perfused and nonperfused mice 
liver applying the nontargeted approach [37]. As blood 
circulates through different organs, it can carry other 
metabolites that are nonspecific to the liver and which 
could enhance the chances of overlapping or diluting 
the liver-specific metabolites. The magnitude of metab-
olite contaminations from blood were seen by elevated 
amounts of some amino acids, organic acids and sug-
ars, with a clear overlap of blood and tissue metabo-
lite profiles. Not only that, the study also confirmed 
the alterations in major blood related proteins through 
proteomics study.

One of the main limitations in tissue metabolom-
ics analysis is the variation in metabolism within the 
tissue. The metabolism in tissue starts changing in sec-
onds and metabolites are highly unstable at high tem-
peratures and easily degrade during ultrasonication or 
homogenization. Thus quenching of metabolism to 
stop any metabolic reaction in the sample is mandatory. 
This quenching is usually obtained by using any one of 
the following, shock freezing with very low tempera-
ture (usually liquid nitrogen -195.8°C) or denaturing 
the enzymes with acid or solvents as fast as possible 
after tissue collection [38–41].

Homogenization
The first need of tissue extraction is the physical dis-
ruption of the tissue sample in order to enable proper 
access of the extracting solvent to the tissue as well as 
obtaining an homogenous solution. Conventionally, 
breakdown of the frozen tissue is achieved by grind-
ing in liquid nitrogen with a cooled mortar and pestle, 
manual degradation of cold tissue with scissors [37] or 
by homogenizing the frozen tissue using an electric tis-
sue homogenizer [41]. The mortar and pestle technique 
has been considered the gold standard but this method 
requires considerable care to transfer the now ground 
tissue and in addition it is very labor intensive and time 
consuming. In addition, weighting the frozen powder 
is hardly reproducible owing to water condensation, 
and following addition of the solvent for extraction a 
clot of the frozen powdered tissue can form. This clot 
is very nonhomogenously suspended and a further 
homogenization step is required. Moreover, there is a 
chance of sample carry over unless the mortar is thor-
oughly washed before the next sample. Compared with 
the mortar and pestle technique, homogenization with 
a probe tip avoids many of the previous problems; it is 
also susceptible to sample carry over unless the probe is 
washed thoroughly between extractions. To avoid these 
problems, mechanical disruption using the Qiagen 
(Hilden, Germany) tissue lyzer or Precellys (MI, USA) 
24-bead-based homogenizer is also used. With these 
systems multiple tissue samples can be homogenized 
simultaneously in a high-throughput manner, probably 
representing the most convenient and repeatable meth-
odology but often not suitable for hard tissues [42–44]. 
Irrespective of the homogenization method used, tis-
sue preparation is very labor intensive and represents 
a considerable bottleneck for metabolite profiling. The 
proper disruption of tissue must be checked with the 
microscope. Moreover, these devices are effective for 
medium- to high-throughput extraction of metab-
olites. However, these devices focus on automating 
the homogenization process, whereas the addition of 
extraction solvents and sample filtration has not been 
fully streamlined. Apart from the techniques involved, 
the need of homogenization is closely linked with the 
objective of any research. The selection of solvent for 
homogenization depends on the category of metabo-
lites to be analyzed and separation techniques to be 
applied. Usually homogenizations are carried out either 
with a separate solvent or along with the solvent used 
for extraction. Most of the methods published in the 

Key term

Quenching: Quenching is the inactivation of the 
metabolism. It should be rapid as compared with the 
metabolic reaction rates to have representative samples.
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Table 2. Mass spectrometry-based application of nontargeted metabolite analysis to different tissue types along with 
the study purpose and sample pretreatment: tissue types in alphabetical order (B–C).

Tissue type Techniques Purpose of the study Sample preparation Ref.

Brain LC–MS To identify the molecular 
mechanism and potential 
biomarker for intrauterine 
growth restriction in a rabbit 
model

Addition of methanol:water mixture in tissue, 
ultrasonication, centrifugation, drying the 
supernatant, reconstituting in 60% methanol 
with 0.1% formic acid and supernatant injection

[62]

Breast GC–MS Investigating the metabolic 
alterations in breast cancer 
subtypes

Tissue homogenization and metabolite extraction 
with degassed isopropanol:acetonitrile:water, 
drying and resuspending the extract in 50% 
acetonitrile, centrifugation, drying and 
derivatizing supernatant for analysis

[72]

Breast GC–MS Identifying the metabolic 
changes in the central pathways 
in invasive carcinoma and 
metabolic markers for breast 
cancer

Tissue homogenization and metabolite 
extracting with isopropanol:acetonitrile:water, 
centrifugation, drying extracts, reconstituting in 
50% acetonitrile, drying and derivatizing before 
analysis

[98]

Breast LC–MS and 
GC–MS

Elucidating tumor and stromal 
genomic characteristics that 
influences tumor metabolism 
through genomic and 
metabolomic analyses

Sample preparation was carried out on a 
robot system using 96-well plates. Briefly, 
tissue homogenization in water, addition of 
ethanol acetate:ethanol (1:1) containing IS, 
centrifugation, repeated metabolite extraction 
from the supernatant with methanol:water 
(3:1) and dichloromethane:methanol (1:1), 
centrifugation, concentrating the supernatant 
before LC injection, and for GC drying and 
derivatizing

[68]

Colon GC×GC–MS Investigating the global 
metabonomic profiling of 
colorectal cancer

Addition of chloroform:methanol:water in 
tissue, ultrasonication, drying and derivatizing 
supernatant before analysis

[76]

Colon GC–MS To investigate the metabolic 
changes in colorectal cancer

Grinding frozen biopsy tissue, 
metabolite extraction with monophasic 
chloroform:methanol:water, centrifugation, 
drying and derivatizing supernatant before 
analysis

[74]

Colon GC–MS To classify tumor and normal 
mucosae metabolic profile

Tissue metabolite extraction with 
chloroform:methanol:water and IS, 
ultrasonication, centrifugation, drying the 
supernatant, addition of anhydrous toluene, 
drying and derivatizing before analysis

[78]

Colon GC–MS Metabolic profiling of human 
colon tissue in terms of its 
sample stability, reproducibility, 
selectivity, linear response and 
sensitivity

Addition of monophasic mixture of 
chloroform:methanol:water in tissue, 
ultrasonication, centrifugation, drying the 
supernatant, addition of toluene, drying and 
derivatizing before analysis

[20]

Colon UHPLC–MS and 
GC–MS

To determine a distinct 
metabolic profile during 
experimental colorectal 
carcinogenesis

Tissue homogenization in water, metabolite 
extraction and deproteinization with methanol, 
centrifugation, direct injection of supernatant in 
UHPLC and for GC analysis drying and derivatizing

[65]

Colon MALDI-TOF-MS 
and LC×LC–MS

Focusing on the molecular 
mechanism of colorectal cancer

Homogenization in water:methanol:chloroform, 
sonication, upper phase collection, repeating 
twice, mixing three upper phases, drying and 
reconstituting in 50% methanol before analysis

[70]

IS: Internal standard; UHPLC: Ultrahigh-pressure liquid chromatography.
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literature have used methanol in different proportions 
(100%/80%/50%) as homogenization solvent. Some of 
them have used deionized water and the rest used the 

extraction solvent in order to perform homogenization 
and extraction together. In any case, the homogeniza-
tion solvent should contain an important proportion of 

Table 3. Mass spectrometry-based application of nontargeted metabolite analysis to different tissue types along with 
the study purpose and sample pretreatment: tissue types in alphabetical order (D–H).

Tissue type Techniques Purpose of the study Sample preparation Ref.

Drosophila 
melanogaster

LC–MS Establishing a baseline 
tissue map of Drosophila 
melanogaster, to show the 
interactions of different tissues 
within the whole organism

Tissue dissection in Drosophila Schneider’s 
medium, monophasic solvent of 
methanol:chloroform:water, homogenization, 
centrifugation, collection of supernatant for 
injection

[41]

Eye LC–MS Characterizing the biochemical 
differences in vitro of different 
animal species

Addition of acetonitrile in the vitreous sample, 
deproteinizing by centrifugation, injection of 
supernatant in the system

[67]

Gastric mucosa GC–MS To test the hypothesis that 
distinct metabolic profiles 
are reflected in gastric cancer 
tissue and exploring potential 
biomarker for gastric cancer

Tissue lyophilization, metabolite extraction 
with mixture of methanol:chloroform, 
centrifugation, drying supernatant, addition of 
ethyl acetate, drying and derivatizing before 
analysis

[79]

Gastric mucosae GC–MS To identify the difference of 
metabolomic profile between 
normal and malignant gastric 
tissue

Metabolite extraction with monophasic mixture 
of chloroform:methanol:water and IS in tissue, 
ultrasonication, centrifugation, drying the 
supernatant, addition of anhydrous toluene, 
drying and derivatizing before analysis

[100]

Head and neck GC–MS Metabolomics analysis of 
squamous cell carcinoma of the 
head and neck

Tissue homogenization in 
methanol:water:chloroform, addition of IS 
and overnight shaking at room temperature, 
addition of water, centrifugation, drying the 
upper layer and derivatizing prior to analysis

[13]

Heart CE–MS To understand the chamber 
specific metabolism and 
pathophysiology in mouse 
heart

Addition of IS containing methanol in frozen 
heart tissues (atria, right ventricle and left 
ventricle tissue), homogenization, addition of 
water and chloroform, centrifugation, filtration, 
lyophilization, resuspend in water before 
analysis

[93]

Heart GCxGC–MS To optimize the metabolite 
extraction from mouse heart 
tissue for GCxGC-TOF MS 
analysis

Pulverized tissue in liquid N2 with mortar 
and pestle, rehomogenization with 
chloroform:methanol on ice, centrifugation 
after adding 50% methanol, drying and 
derivatizing the aqueous layer for analysis

[19]

Heart GC–MS Investigating myocardial 
metabolic changes in 
depression rat model, to find 
the links between depression 
and cardiovascular disease

Tissue homogenization in methanol containing 
IS, centrifugation, drying and derivatizing 
supernatants before GC–MS analysis

[36]

Heart LC–MS and 
CE–MS

To investigate the 
mechanistic basis of dilated 
cardiomyopathy in hamsters

Addition of IS containing methanol in tissue, 
homogenization, for CE injecting by drying the 
supernatant and resuspending in water from 
the homogenate; for LC: addition of water and 
chloroform (500, 200, 500 µl), centrifugation, 
filtration, lyophilization, resuspend in water 
before analysis

[64]

IS: Internal standard.
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Table 4. Mass spectrometry-based application of nontargeted metabolite analysis to different tissue types along with 
the study purpose and sample pretreatment: tissue types in alphabetical order (H–L).

Tissue type Techniques Purpose of the study Sample preparation Ref.

Hippocampus ICR-FT-MS Metabolomics analysis of 
hippocampus tissues to 
understand the mechanism of 
Alzheimer’s disease in transgenic 
mice

Addition of 80% methanol in tissue, 
submerging in liquid N2, thawing, 
sonication, centrifugation, supernatant 
collection, drying, reconstituting in 50% 
acetonitrile with 0.1% formic acid, diluting 
100-times before injection

[25]

Hippocampus LC–MS Toxicological study 
of a neurotoxin 
(2,3,7,8-tetrachlorodibenzo-p-
dioxin) in a rat model

Tissue homogenization in methanol, 
centrifugation, drying and reconstituting 
the supernatant in 10% acetonitrile before 
injection

[101]

Intestine UHPLC–MS Identifying metabolite markers 
of intestinal tissue injury after 
ionizing radiation exposure in a 
murine model

Frozen tissue homogenization in 50% 
methanol containing IS, addition of 
acetonitrile, centrifugation, incubation 
on ice, drying and reconstituting the 
supernatant in water before analysis

[102]

Intestine (ileum) LC–MS Monitoring the metabolic events 
associated with the gradual 
development of Crohn’s disease-
like ileitis in a mouse model

Tissue homogenization in EDTA and 
BHT-buffer, addition of IS, acidification 
by citric acid, deproteinization with 
methanol:ethanol (1:1), centrifugation, 
drying organic phase, reconstituting in 
20% acetonitrile before analysis

[63]

Kidney LC–MS To understand the metabolomic 
changes of ischemia/reperfusion-
induced acute kidney injury and 
the protective effect of carnitine

Tissue homogenization in ice cold PBS, 
centrifugation, supernatant collection for 
injection

[66]

Kidney LC–MS and GC–MS To analyze the metabolic 
changes of three proximal tubule 
nephrotoxins

Tissue homogenization in water, 
deproteinization with methanol 
containing IS, centrifugation, supernatant 
injection in LC and for GC drying and 
derivatizing before injection

[29]

Kidney UHPLC–MS and 
GC–MS

Analyzing the systematic 
alterations of renal cortex 
metabolites to explore the 
related mechanisms of diabetic 
kidney disease

Tissue homogenization in methanol 
containing IS, storing homogenates 
overnight, centrifugation, injection 
of supernatant in UHPLC and for GC 
derivatization before analysis

[40]

Liver GC×GC–MS Evaluating the effect of blood 
on liver fingerprinting analysis 
by comparing perfused and 
nonperfused mice liver

Tissue homogenization (24 different 
mixtures of five solvents), centrifugation, 
addition of IS and derivatization prior to 
analysis

[37]

Liver GC×GC–MS Assessing the feasibility of using 
commercially available software 
for nontarget processing of 
GC×GC–MS data

Addition of 80% methanol containing 
IS, ultrasonication, centrifugation drying 
and derivatizing the supernatant before 
injection

[77]

Liver GC–MS Evaluating metabolomics profile 
of hepatocellular carcinoma

Tissue homonization in chloroform: 
methanol containing IS, diluting with 
chloroform:methanol, addition of 
sodium chloride solution, centrifuging 
supernatant, drying and derivatizing both 
phases before analysis

[80]

BHT: Butylated hydroxytoluene; FT: Fourier transform; ICR: Ion cyclotron resonance; IS: Internal standard; PBS: Phosphate buffered saline; UHPLC: Ultrahigh-pressure 
liquid chromatography.
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polar solvent to promote contact with the tissue whose 
composition is mainly water. A recent study on lung 
metabolomics applying the nontargeted approach has 
described the importance of the selection of homoge-
nization solvent and how they affect metabolite cov-
erage [10]. To avoid any metabolite loss during solvent 
extraction care should be taken during the homogeni-
zation and solvent selection.

Metabolite extraction
The main goal of metabolite extraction in tissue metab-
olomics analysis is to obtain reproducible results with 
the broadest possible range of metabolites. The pri-
mary step in metabolite extraction is the separation 
of unwanted compounds such as proteins. However 
the choice of metabolite extraction depends on the 
analytical tools and the metabolites of interest. Tissue 
extraction should be: as nonselective as possible, for 
wider metabolite coverage, reproducible, fast and easy, 
and should involve as few as steps as possible, enabling 
high-throughput analysis. Extraction of metabolites 
from tissues is often the most labor intensive and there-
fore the rate-limiting step, and extraction is usually 
achieved either by single phase or biphasic extraction. 
The biphasic separation has been found to be popu-
lar because polar and nonpolar small metabolites can 
be extracted simultaneously and each fraction can be 
analyzed separately. The biphasic method was first 
described by Bligh and Dyer using chloroform/metha-
nol/water in a proportion to obtain two separate phases 
[45]. Further investigation on metabolite extraction 
strategies by Le Belle and coworkers also concluded that 
methanol/chloroform/water is the preferred method 
and concluded that this method may be mandatory for 
lipid-rich tissues [46]. Given the hazards associated with 
chloroform use, Matyash et al. proposed the usage of 
another organic solvent methyl-ter-butyl-ether, which 
has proven very useful in the extraction of polar and 
nonpolar metabolites [47]. In another study, dichloro-
methane was used as an alternative to chloroform and 
was proven to be superior [42]. Although multiphase 
extractions provide a higher number of extracted 
metabolites with higher concentrations, there are some 
metabolites that split in both phases creating prob-
lems during method validation. Moreover, metabolites 
that are very low in concentration can be lost owing 
to dilution between phases and two analytical runs are 
necessary. Considering these facts, a single extraction 
step would be ideal. Most published works regard-
ing nontargeted tissue metabolomics have focused on 
single phase separation typically using methanol or a 
monophasic solvent mixture of methanol/chloroform/
water as extraction solvent (Table 1). Twenty-four sol-
vent mixtures from six different solvents (methanol, 

ethanol, isopropanol, acetone, chloroform and water) 
were tested for a liver study applying the nontargeted 
approach. The researchers proved that the extraction 
yield could not be improved either with acetone, isopro-
panol or water, but that a single phase solvent mixture of 
methanol/ethanol/water (8.5/1/0.5, v/v/v/) showed bet-
ter extractions [37]. Our own study described that using 
one single phase and multiplatform analysis resulted in 
wider metabolite coverage in mouse lung tissue. Not 
only that, this method was validated selecting metab-
olites of different physicochemical properties, covering 
the entire chromatogram in three different platforms in 
terms of linearity, accuracy, precision and the method 
proved to be very reproducible [10]. Using either sin-
gle or biphasic separation, tissue extraction involves 
multiple steps that include solvent additions, mixing 
and centrifugation. This is disadvantageous in terms 
of being time-consuming; furthermore, each step has 
the potential to introduce variation into the extraction 
protocol. The extraction yield and reproducibility does 
not only depend on the choice of solvent or phase 
separation. The addition of solvent during extraction 
also matters. The study of  Wu et  al. in developing a 
high-throughput methodology for the flatfish liver 
used three different solvent addition strategies [48]. The 
original slow stepwise addition, the addition of solvents 
in a more rapid two-step protocol, and an all-in one 
addition of all solvents simultaneously and the quality 
of these extraction methods were evaluated based on 
metabolite yield, extraction reproducibility and sam-
ple throughput. The results showed that the two-step 
method provided good quality data and more accurate 
snapshot of the liver metabolome [48]. The two-step pro-
tocol was later used by Masson et. al. in a nontargeted 
LC–MS-based study of liver metabolite profiling and 
was found to be optimal [42]. Even in our study a two-
step solvent addition protocol has been followed [10]. In 
order to extract all possible metabolites (from polar to 
nonpolar), it is quite usual to extract a tissue sample 
using both aqueous and organic solvent. Adding them 
separately could enhance solvent specific metabolite 
extraction. Want et al. also provided detailed protocols 
for the preparation of animal and human tissue sam-
ples for obtaining nontargeted metabolic profiles based 
on the two-step method [49]. Another crucial point in 
nontargeted metabolomics is large-scale study sample 
preparation and analysis. Usually researchers attempt 
to reduce within-experiment analytical variation or any 
unavoidable sources of measurement error to be intro-
duced, which is very likely for large-scale multi-batch 
experiments. In the quest to overcome this problem, 
the necessity for the development of robust workflows 
that minimize batch-to-batch variation have been well 
explained by Kirwan and co-workers [50].
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MS-based techniques involved in 
nontargeted tissue metabolomics
This is a reliable analytical method that helps to make 
a primary trustworthy assumption from the identified 
discriminant metabolites. Several separation techniques 
are available to use along with MS detection such as LC, 
GC, CE, but also direct infusion can be used with ion 
cyclotron resonance–Fourier transform (ICR-FT).

LC–MS
LC coupled to MS is a powerful tool for metabolom-
ics because it allows for the separation and character-
ization of the majority of compounds. It can resolve 
different metabolite groups ranging from hydrophilic 
to hydrophobic. LC with MS detection has been used 
extensively in nontargeted metabolomics study rather 
than other detection methods, because it has structural 
identification capabilities and detection with MS is 
more sensitive and accurate. However, ion suppression 
due to coeluting compounds is the major limitation for 
LC–MS. The LC separation depends on the molecular 
properties of the analyte, which determines what type 
of stationary phase (column type) and mobile phase 
are to be used for a better separation. In tissue metab-
olomic studies, reversed phase (RP; C8/C18), normal 
phase (NP) and hydrophilic interaction chromatog-
raphy (HILIC) are being used as common stationary 
phases depending on the specific class of compounds. 
Mostly published LC–MS-based nontargeted tissue 
metabolomics studies used RP silica-based columns 
with various particle sizes considering their sensitivity, 
lower detection limit and applicability to the majority 
of the compounds. The mixed use of RP with NP or 
HILIC has also been studied [60]. HILIC-based sepa-
rations are well suited for hydrophilic compounds as 
with classical RP columns many polar compounds 
have poor retention, eluting near the void volume. 
In a recent study, Lv et  al. compared eight different 
categories of column and found that RP pentafluoro-
phenylpropyl showed better separation than RP C18, 
without the need for an ion-pairing reagent [61]. Usu-
ally the gradient for RP-based LC separation starts 
with high percentage of water and less organic solvent 
and HILIC based starts with mobile phase with high 
organic content with less aqueous modifiers. Almost all 
the RP, NP or HILIC-based tissue extract separations 
were following this gradient criteria using water as 
aqueous, and methanol, acetonitrile and isopropanol as 

organic solvents (see Table 1). The uses of different per-
centages of formic acid/acetic acid/ammonia have also 
been studied in order to increase metabolite ionization 
[10,57,58,62–65]. In all cases electrospray ionization (ESI) 
has been chosen as the ionization mode using only pos-
itive or both positive and negative mode. While prepar-
ing tissue extract for LC–MS study using RP station-
ary phases, either using methanol alone or a mixture of 
organic compounds, a single phase has been preferred 
in most cases [10,38,53,56,60,66–68]. For the combination 
of RP and HILIC or while focusing only on nonpolar 
compounds, biphasic separations and separated injec-
tions of each phase were undertaken [69,70]. LC–MS 
based studies usually include an tandem MS approach 
to characterize compounds from tissue extract [22]. The 
introduction of ultrahigh-pressure LC with smaller 
column particles, operating at high pressure, increases 
the efficiency by increasing both sensitivity and reso-
lution with shorter analysis time. Ultrahigh-pressure 
LC–MS has also been applied in nontargeted tissue 
analysis resulting in wider metabolite coverage [38,69]. 
Want et  al. have suggested a LC–MS-based work-
flow for the metabolic profiling of tissues [49]. A 
LC–MS-based nontargeted approach has been used 
to identify the molecular mechanism or diagnosis of 
different disease states including cancer, acute kidney 
injury, Alzheimer’s, depression, HIV infection among 
others [23,56,58,66,71].

GC–MS
GC–MS is the suitable comprehensive analytical tool 
for identification and quantification of volatile and 
semivolatile organic compounds in complex mixtures, 
as it combines high-separation efficiency with selec-
tive and sensitive mass detection. Moreover it can be 
used to identify unknown organic compounds both by 
matching spectra with reference spectra and by a priori 
spectral interpretation. Moreover, the compound iden-
tification is quite straight forward owing to the exten-
sive and reproducible fragmentation pattern obtained in 
full-scan mode. Unlike other separation techniques GC 
has few limitations. Only thermally stable compounds 
with high vapor pressures can be analyzed by GC–MS; 
however, as the samples contain a complex mixture, 
sample preparation steps are quite long and complicated 
in order to properly vaporize the analyte in the mixture. 
Nearly all the published articles regarding GC–MS 
based nontargeted tissue metabolomics used an electron 
ionization source and up to now, very few have used 
exact mass analyzers. A fused silica capillary column 
with a 5% phenyl group or 100% polydimethylsiloxane 
were used in most cases [36,72–74]. Along with this a short 
guard column was also used in most of the cases in order 
to increase the sensitivity. In order to vaporize the polar 

Key term

Metabolic profiling: It is the targeted measurement 
of one/some known metabolites involved in a given 
biochemical pathway. Fingerprinting and profiling are 
frequently used indistinctively in the literature.
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Table 5. Mass spectrometry-based application of nontargeted metabolite analysis to different tissue types along with 
the study purpose and sample pretreatment: tissue types in alphabetical order (L).

Tissue type Techniques Purpose of the study Sample preparation Ref.

Liver GC–MS Comparing the liver metabolome 
of specific pathogen-free and 
germ-free mice

Tissue homogenization with methanol, 
addition of water and chloroform, 
deproteinizing upper layer by centrifugal 
filtering, addition of IS, lyophilization and 
derivatization before analysis

[81]

Liver GC–MS To develop an optimized 
extraction method and 
comprehensive profiling 
technique for liver metabolites

Grinding liver tissue using mortar and 
pestle, addition of solvent containing IS, 
centrifugation, drying and derivatizing the 
supernatant before analysis

[82]

Liver GC–MS Metabolomics evaluation of the 
altered biochemical composition 
after exhaustive and endurance 
exercises in rats

Tissue homogenization in methanol, 
addition of water and chloroform, 
centrifugation, filtering aqueous layer, 
addition of IS, drying and derivatizing 
before analysis

[88]

Liver GC–MS Investigating abnormal metabolic 
process in both serum and liver 
tissue of liver transplanted rats

Tissue homogenization in sodium chloride, 
addition of acetone and IS, incubation, 
centrifugation, drying supernatant and 
derivatizing for analysis

[89]

Liver ICR-FT-MS To investigate the applicability of 
FT-ICR-MS based metabolomics 
on biopsy sample to a small but 
well-defined cohort of patients 
undergoing liver transplantation

Tissue homogenizing in 80% methanol, 
addition of chloroform and water, 
vortexing, incubation on ice, centrifugation, 
drying both the polar and nonpolar layers, 
and reconstituting before analysis

[95]

Liver UHPLC–MS To characterize the metabolic 
profile of steatosis in human 
tissue and to identify the 
potential disturbances in the 
hepatic metabolism of liver 
damage

Homogenizing frozen tissue in 80% 
methanol containing IS, metabolite 
extraction with chloroform and ethanol, 
centrifugation, separation of the layers and 
injection separately

[60]

Liver UHPLC–MS and 
GC–MS

Metabolomic investigation of 
the effect of PON1 deficiency 
on histological alterations and 
hepatic metabolism in mice after 
high-fat high-cholesterol diet

Tissue homogenization, deproteinization 
with methanol, supernatant collection, 
drying, reconstitution in 0.1% formic 
acid and 6.5 mM ammonium bicarbonate 
for UHPLC. For GC–MS drying and 
derivatization before analysis

[23]

Liver LC–MS Evaluating of the metabolic 
characteristics of tumor tissue 
and the impact of tumors on 
surrounding tissue

Tissue homogenization in cold 80% 
methanol, ultrasonication, deproteinization, 
centrifugation, supernatant collection, 
freeze drying and reconstitution in 80% 
methanol before analysis

[71]

Liver LC–MS Identification of differential 
endogenous metabolites and 
their molecular mechanism in 
hepatitis-B-related hepatocellular 
carcinoma

Tissue homogenization in deionized water, 
ultrasonication, centrifugation, supernatant 
collection, deproteinization, centrifugation 
and filtering before injection

[103]

Liver LC–MS Identifying the gene expression 
related to hepatocellular 
carcinoma and metabolite 
profiling of nonalcoholic fatty 
liver disease

Liver tissue, homogenization in ice-
cold methanol with 0.1% formic acid, 
centrifugation, supernatant collection and 
injection

[104]

FT: Fourier transform; ICR: Ion cyclotron resonance; IS: Internal standard; UHPLC: Ultrahigh-pressure liquid chromatography. .
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metabolites with less thermal stability prior to GC anal-
ysis it is necessary to perform chemical derivatization, 
which is usually performed with an oximation reagent 
followed by silylation, or solely silylation with N-meth-
yl-N(trimethylsilyl)-trifluroacetamide or N,O-bistri-
fluroacetamide with trimethylchlorosilane reagent for 

tissue metabolomics study [16,20,36,54,73,75–90]. Only one 
author used an alternative derivatization reagent with 
ethylchloroformate and the derivatization was done in 
two steps [55]. Many GC–MS applications alone or in 
combination with LC–MS have been applied to almost 
all kinds of tissue type in order to find out the differing 

Table 6. Mass spectrometry-based application of nontargeted metabolite analysis to different tissue types along with 
the study purpose and sample pretreatment: tissue types in alphabetical order (L).

Tissue type Techniques Purpose of the study Sample preparation Ref.

Liver LC–MS Using data-driven procedures to 
improve metabolite extraction 
protocols for mammalian liver 
metabolomics analysis

Tissue homogenization in methanol or 
PBS, dividing supernatant in two parts 
after centrifugation, dilution with either 
0.1 M formic acid or 0.1 N hydrochloric acid, 
recentrifugation, filtering twice, applying 
solid-phase extraction before analysis

[105]

Liver and lung LC–MS Integration of in vivo sampling during 
liver and lung transplantation, sample 
preparation and global extraction 
of metabolites using solid phase 
microextraction

Solid phase microextraction [106]

Liver and muscle GC–MS To test how artificial selection for 
high mass-independent maximal 
aerobic metabolic rate affects 
the metabolite profiles in seven 
generations of rat

Tissue pulverizing under dry ice and liquid 
N2, addition of cold methanol:chloroform, 
sonication, addition of chloroform:water 
and IS, centrifugation, processing of two 
separate phases for analysis

[90]

Liver and muscle UHPLC–MS Developing single metabolite 
extraction protocol for simultaneously 
performing targeted and nontargeted 
metabolomics as well as lipidomics

Crushing tissue using Qiagen tissue 
lyser, lyophilization, addition of 
methanol:methyl-ter-butyl-ether:water 
(two phase) for metabolite extraction, 
drying and reconstituting separately 
before injection

[69]

Liver and muscle LC–MS and 
GC–MS

To obtain an unbiased map and 
understand the metabolic decline 
during aging-related diseases in 
mammals

Tissue homogenization, metabolite 
extraction with methanol containing IS, 
supernatant injection in LC–MS, drying and 
derivatizing before analysis in GC–MS

[91]

Liver, aorta, heart 
and muscle

CE–MS Characterization of the metabolic 
imbalances of hypercholesterolemia in 
a Watanabe heritable hyperlipidemic 
rabbits model

Addition of IS containing methanol in 
tissue, homogenization, addition of water 
and chloroform, centrifugation, filtration, 
lyophilization, resuspend in water before 
analysis

[94]

Liver, kidney, 
heart, intestine 
and muscle

LC–MS A broad profiling of hydrophilic 
metabolites from biological 
samples using a reversed-phase 
pentafluorophenylpropyl column

Tissue homogenizing in 50% ice-cold 
methanol, addition of chloroform, vortex-
mixing, centrifugation, analyze the 
supernatant

[61]

Lung LC–MS; 
GC–MS and 
CE–MS

Fingerprinting method validation and 
application on rat model of sepsis

Tissue homogenization in 50% methanol, 
metabolite extraction methyl-ter-
butyl ether:methanol (one phase), 
centrifugation, injection of supernatant in 
LC, drying and derivatizing for GC 
Deproteinizing the homogenate with 0.1 M 
formic acid by 30 kDa millipore protein 
cut-off filter, drying and reconstituting in 
0.1 M formic for injection

[10]

IS: Internal standard; PBS: Phosphate buffered saline; UHPLC: Ultrahigh-pressure liquid chromatography.
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metabolites for cardiovascular disease, cancer, depres-
sion, age-related disease, as well as developing databases 
(see Table  1) [36,55,77,79,82,91,92]. Metabolite extractions 
were mainly focused on single phase using methanol or 
mixtures of other organic solvents with water. Separa-
tion of polar and nonpolar metabolites has also been 
performed and analyzed separately. A 2D GC tech-
nique has also been applied in several studies [19,37,76,77]. 
The advantage of GC×GC–MS over GC–MS has been 
studied by Mal et al. in a nontargeted study of colorec-
tal cancer. The study found broad significant metabolic 
space coverage compared with GC–MS. Moreover, the 
clustering of quality control samples was better with 
GC×GC–MS [76].

CE–MS
A major number of metabolites belong to the group 
of polar and ionic compounds. CE is able to separate 
a wide range of analytes from inorganic ions to large 
proteins. CE has an advantage over GC or LC for the 
resolution of these ionic compounds and even their 
isomers because CE separates metabolites accord-
ing to their charge to mass ratio. On the other hand, 
GC and LC require the interaction with a stationary 
phase for metabolite separation. This separation crite-
ria makes CE a complementary tool to the more estab-
lished chromatographic separation technique. CE has 
more advantages over the other separation techniques, 
such as the analysis is fast, has a high resolution, is low 
cost, requires low sample volume (a few nanoliters) and 
requires very easy sample preparation steps. Although it 
has many advantages, CE has not been used extensively 
in metabolomics studies owing to several constraints. 
One of the main reasons behind this is the interface 
to combine CE with MS, which is not an easy task 
due to the necessity of sheath liquid. Another factor 
is the low volume of sample injection. As the amount 
is very low, sensitivity is low too. The interphase ESI 
(with or without sheath flow) enables metabolites to 
change from liquid to gas phase and it is the most com-
mon interphase used for MS as it is easily adaptable 
with CE. However there are not many reports based 
on CE–MS nontargeted metabolomics and very few 
related to tissue metabolomics. A CE-ESI-MS based 
nontargeted approach has been applied in lung, adi-
pose, heart, liver, aorta, muscle and in all rat organs 
[10,51,64,93,94]. Different homogenization and extraction 
steps were followed either using the monophasic mix-
ture of methanol/chloroform/water or only metha-
nol. In all cases the extracts were dried and reconsti-
tuted before injection to avoid any interruption with 
the CE current. Sugimoto et  al. have applied several 
CE–MS-based nontargeted metabolomics approaches, 
following a similar extraction procedure for all tissue 

types and analytical conditions for analysis in positive 
and negative ionization modes [17]. Sample extracts 
were passed through a 5 kDa protein cut-off filter to 
get a clear solution for injection [51,64,93,94]. In our own 
study we described a multiplatform method validation 
based on lung tissue using a 30 kDa protein cut-off fil-
ter to remove proteins or other tissue debris from the 
extract without any analysis problems. Moreover the 
homogenization and extraction was very simple only 
with 50% methanol and later diluting it with equal 
volume of 0.1 M formic acid. Presently no ideal analyt-
ical platform exists that covers the entire metabolome 
[10]. Different techniques have distinct advantages to 
investigate different groups of metabolites. So the use 
of multiplatform approaches could better characterize 
the entire metabolome, hence CE–MS can be a perfect 
complementary tool.

ICR-FT-MS
ICR-FT-MS coupled to an ESI source could provide 
fine resolved ions of small molecules in metabolomics 
analysis. It enables high-throughput global analysis of 
compounds in a complex matrix with high mass accu-
racy and fast identification solely based on the mass to 
charge ratio of each peak. However, the current lim-
itations of FT-ICR-MS include lower technical repro-
ducibility, less quantitative analysis, higher detection 
limit and less information as the identification is based 
only on the mass to charge ratio without additional 
information such as retention. An ICR-FT-MS-based 
nontargeted approach has been applied in the liver, 
brain and heart tissue [25,50,95]. The extraction solvent 
was either methanol or a combination of methanol/
chloroform/water to get one or two phases depending 
on the need of metabolite analysis.

Several studies including our own have described 
the utility of using multiplatform approaches 
[10,23,29,39,40,64,70,91,96]. We described a multiplatform 
nontargeted approach on lung tissue using LC–MS, 
GC–MS and CE–MS from method development, val-
idation and successful application on sepsis and control 
[10]. The study provided high-metabolite coverage and 
even the application described significant differences 
whereas sepsis is not related to lung. Moreover the 
amount of tissue required was minimum compared 
with other studies. The study showed the same homog-
enization process and the very simple sample extraction 
protocol for all three platforms could be ideal for all 
tissue analysis.

Data treatment & pathway integration
Nontargeted metabolomics approach generates huge 
data sets that need to be handled with careful data 
handling and mining sense. Several statistical software 
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packages (univariate or multivariate) are available for 
data analysis. Multivariate algorithms can often pres-
ent these data sets as predictions of class separation and 

it is very important that this prediction is carried out 
in a relevant way. There are several strategies that are 
already being used for validating a statistical model, 

Table 7. Mass spectrometry-based application of nontargeted metabolite analysis to different tissue types along with 
the study purpose and sample pretreatment: tissue types in alphabetical order (L–P).

Tissue type Techniques Purpose of the study Sample preparation Ref.

Lung GC–MS To identify a clinical biomarker 
for lung cancer

Tissue homogenization with 
methanol:water:choloroform (2.5:1:1), 
addition of IS, centrifugation, addition of 
water in the supernatant, centrifugation, 
freeze drying the supernatant and 
derivatizing before injection

[16]

Lung and prostate CE–MS To understand tissue-specific 
tumor microenvironments, in 
order to development of more 
effective and specific anticancer 
therapeutics

Addition of IS containing methanol in 
frozen tissue, homogenization, addition of 
water and chloroform (500, 200, 500 μl), 
centrifugation, filtration by 5 kDa millipore 
filter, lyophilization, resuspend in water 
before analysis

[75]

Muscle and liver UHPLC–MS To examine the metabolite 
alterations in liver and muscle 
tissues in mice after a high-
fat diet supplemented with 
betaine

Grinding tissue samples with mortar and 
pestle, metabolite extraction with 90% 
methanol (100 mg of powdered tissue), 
centrifugation and filtering supernatant 
before injection

[107]

Pancreatic GC–MS Examining the metabolic 
changes for acute pancreatitis 
in cerulean- and arginine-
induced pancreatitis mice 
model

Tissue homogenization in 
methanol:water:chloroform, addition of IS; 
centrifugation, addition of more chloroform 
and water in supernatant, centrifugation, 
lyophilizing and derivatizing the supernatant 
before injection

[83]

Pancreatic LC and 
UHPLC–MS

Metabolic pathway 
identification in pancreatic 
ductal adenocarcinoma by 
integrating metabolomics and 
transcriptomics

Tissue homogenization, deproteinization with 
methanol, supernatant collection, drying, 
reconstitution in 0.1% formic acid and 6.5 mM 
ammonium bicarbonate for UHPLC. For 
conventional LC in 0.1% formic acid (in 10% 
methanol) before analysis

[38]

Pancreatic LC–MS and 
GC–MS

Identification of the 
metabolic pathways that are 
perturbed in pancreatic ductal 
adenocarcinoma

Homogenization, addition of IS, protein 
precipitation, supernatant collection, vacuum 
drying, resuspend in acidic solvent for LC–MS 
analysis and derivatization for GC–MS

[96]

Placenta GC–MS To determine whether the 
altered O2 tension affects the 
composition of the placental 
metabolome

Tissue homogenizing with cold 50% methanol 
and PBS, centrifugation and supernatant 
collection, repeating process twice, addition 
of IS, lyophilization and derivatization before 
analysis

[84]

Placenta UHPLC–MS 
and GC–MS

To describe methodologies used 
to interrogate data acquired 
from a wide range of complex 
metabolomes

Placental tissue cultured for 96 h in a serum-
based growth medium, suspending in the 
biomass pellets methanol, freezing in liquid 
N2 and thaw on ice, centrifugation, repeating 
three-times. Repeating the extraction again 
with the pellet, lyophilize the combined 
supernatant and reconstitution in water for 
analysis

[92]

IS: Internal standard; PBS: Phosphate buffered saline; UHPLC: Ultrahigh-pressure liquid chromatography.



www.future-science.com 1671future science group

Analytical protocols based on LC–MS, GC–MS & CE–MS for nontargeted metabolomics of biological tissues    Review

which we are not going to describe as this is beond the 
scope of this review. Generally, normalization of data 
from animal tissues is based on tissue weight. How-

ever, some organs are heterogeneous and may differ in 
water content among samples, levels of DNA, proteins 
or even one specific protein can be used for normaliza-

Table 8. Mass spectrometry-based application of nontargeted metabolite analysis to different tissue types along with 
the study purpose and sample pretreatment: tissue types in alphabetical order (P–W).

Tissue type Techniques Purpose of the study Sample preparation Ref.

Prostate LC–MS and 
GC–MS

Focusing on metabolomics 
signature of prostate cancer in 
tumor tissue

Tissue homogenization in deionized water, 
metabolite extraction with 80% methanol, 
centrifugation, supernatant collection, direct 
injection in LC–MS, derivatizing before 
injecting in GC–MS

[73]

Prostate LC–MS and 
GC–MS

The initial focus was directed 
towards understanding the 
tissue metabolomic profiles 
as they exhibited more robust 
alterations

Tissue extractions were performed in four 
steps using solvents (ethyl acetate:ethyl 
alcohol; methanol; methanol:water and 
dichloromethane:methanol) containing IS. 
Combining all the supernatant, drying and 
reconstituting 10% methanol and 0.1% formic 
acid for LC and derivatization for GC analysis

[108]

Rat (all organs) CE–MS Developing Mouse Multiple 
Tissue Metabolome database

Addition of IS containing methanol in frozen 
adipose tissue, homogenization, addition 
of water and chloroform, centrifugation, 
filtration, lyophilization, resuspension in water 
before analysis

[17]

Renal GC–MS To characterize the key 
metabolic features of renal cell 
carcinoma

Tissue homogenizing, centrifugation, drying 
the supernatant and derivatization prior to 
analysis

[85]

Sarcoma LC–MS To demonstrate the analysis 
of polar metabolites extracted 
directly from formalin-fixed, 
paraffin-embedded specimens

Addition of methanol in tissue, incubation, 
centrifugation, drying the supernatant, 
resuspending in HPLC grade water before 
analysis

[109]

Skin GC–MS Explore the metabolic 
perturbation associated with 
ionizing radiation

Tissues homogenization in ammonium 
bicarbonate solution, addition of prechilled 
chloroform:methanol, centrifugation, drying 
and derivatizing the upper layer before 
analysis

[86]

Skin GC–MS Analyzing the volatile 
metabolic signature of a 
malignant melanoma

Solid phase microextraction  [87]

Spinal cord UHPLC–MS and 
GC–MS

To examine a novel dietary 
strategy to provide significant 
antinociceptive benefits in rat 
pain model

Tissue homogenizing in water, protein 
precipitation with methanol containing IS, 
centrifugation, drying and reconstituting the 
supernatant for UHPLC and derivatizing for GC 
analysis

[39]

Whole insect LC–MS Metabolomic analysis of 
the genus Metarhizium 
and Beauveria (biological 
pesticides)

Separation of medium from tissues, snap 
freezing in liquid N2, deproteinizing with 
acetonitrile, injecting the supernatant

[110]

Whole mussel UHPLC–MS To investigate the sex-specific 
differences in the mussel 
metabolome to understand 
their reproductive physiology

Tissue homogenization in methanol, 
centrifugation, addition of 5% methanol 
in sodium acetate buffer in supernatant, 
purifying, addition of IS, drying, reconstituting 
in 50% methanol and filtering prior to analysis

[102]

IS: Internal standard; UHPLC: Ultrahigh-pressure liquid chromatography.
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tion. Data analysis always ends up with one or more 
statistically significant compound, which can give an 
insight into the progress or pathogenesis of specific 
conditions. These metabolites need to be integrated to 
the particular pathway in order to find out more about 
its relationship with a specific disease, hence identify-
ing a disease-specific biomarker for clinical diagnosis 
and so on. Along with data mining software several 
databases are available online in order to identify the 
significantly different metabolites (e.g., METLIN, 
CEU mass mediator, LIPID MAPS). It is necessary 
to validate biomarker with a target specific analytical 
method, validating analytical method, proper reference 
material and applying proficiency test.

Application on different biological tissues 
& findings
Compared with biofluid, tissue homeostasis is princi-
pally intracellular rather than extracellular. The physi-
ological state of a complex tissue is reflected in the full 
complement of various metabolites by its constituent 
cells. Moreover, biomarkers derived from tumor tis-
sues may provide higher sensitivity and specificity than 
those from biofluids, although obtaining tissue samples 
is always invasive (endoscopy or biopsy) [20]. Hence, 
not only biofluids but also tissue samples or biopsies are 
moving more and more into research focus including 
a nontargeted metabolomics approach. The number of 
publications indexed by the terms nontargeted tissue 
metabolomics and tissue fingerprinting in a PubMed 
search is growing exponentially. Figure 2 demonstrates 
the percentage of publications based on different tissue 
types from the number of publications returned with an 
‘un/nontargeted metabolomics, fingerprinting, human 
and animal tissue, mass spectrometry’ keywords search 
of NCBI PubMed. For clinical diagnosis purposes, 
minimally invasive or noninvasive biofluids are pre-
ferred and in some cases biopsy samples. But in any 
altered/diseased condition the changes in metabolism 
are initiated at tissue level and later on the metabolites 
are excreted/transferred in biofluids. Thus nontargeted 
tissue metabolomics offers the opportunity to under-
stand the site-specific molecular mechanism involved 
in any disease conditions. This also helps in the identi-
fication of potential biomarkers for the early diagnosis 
in biofluids and effective treatment. Until now, most 
of the tissue metabolomics works have been applied 
in order to understand the mechanism behind cancer. 
Application of nontargeted approaches on tumourous 
and nontumourous tissue from liver, breast, prostate, 
colon, esophageal, bladder and gastric cancer revealed 
almost similar altered metabolic pathways related to 
glycolysis, amino acid metabolism, tricarboxylic acid 
cycle and fatty acid metabolism [53,73,74,97–100]. How-

ever, advanced steps on biomarker development based 
on the findings are still lacking. Some of the studies 
found very strong relationships for certain metabo-
lites, suggesting they need to be studied further in a 
targeted manner in order to obtain clinical markers. 
For example, the ratio of betaine:propionylcarnitine 
has been found to be significant when separating 
hepatocellular carcinoma patients from hepatitis and 
cirrhosis patients; palmitoleic acid has also been found 
in pancreatic cancer diagnosis and the metabolite ratio 
of cytidine-5-monophosphate:pentadecanoic acid has 
been found in breast cancer [61,98]. Tissue metabolom-
ics has also been applied to several other diseases. The 
purpose of several nontargeted tissue metabolomics 
applications with the sample preparation strategy have 
been described in Tables 1–8.

Future perspective
By the use of such highly sensitive and reliable MS-based 
nontargeted metabolomics approaches, an improved 
ability to understand the site-specific mechanism of any 
disease state can be possible in complex biological spec-
imens. However, the success depends on several factors, 
such as overcoming the challenges related to sample pre-
treatment, spectral acquisition of metabolites, correlating 
the significant metabolites with biochemical pathways 
and validation of the identified metabolites in another 
set of samples applying both qualitative and quantitative 
approaches. Moreover, the identification of metabolites 
in nontargeted metabolomics studies is solely based on 
online databases that are not yet 100% complete. Repro-
ducible spectra fragmentation is very useful for identify-
ing compounds in GC–MS. Moreover, with exact mass 
analyzers the potentiality could be exciting, but exact 
mass spectral libraries are not commercially available 
yet. As a result of all of this, many of the metabolites that 
could have strong relationships with specific conditions 
remain unknown. Therefore, another challenge in the 
nontargeted approach is to develop methodologies that 
will allow the fast identification of these ‘unknowns’. 
Although, until now, several applications have been pub-
lished based on nontargeted tissue metabolomics, none 
of them have moved forward in order to provide a tar-
get-specific marker, which requires analyzing a large set 
of samples as well as validating the strong differentiating 
metabolites to gain reliable biomarkers.
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Executive summary

Targeted tissue for study
•	 A mass spectrometry (MS)-based nontargeted metabolomics approach has been applied to almost all kinds of 

tissue type although mostly to the liver.
Homogenization & extraction
•	 Mechanical disruption of tissue was carried out using methanol and water as the homogenization solvent.
•	 100% methanol and a monophasic or biphasic mixture of methanol/chloroform/water was the most used 

extraction solvent.
Multiplatform study
•	 More analytical metabolite coverage was obtained using a combination of liquid chromatography-MS, gass 

chromatography-MS and capillary electrophoresis-MS rather than a single analytical tool.
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