

ThermoFisher SCIENTIFIC

Future analytical trends for the analysis of biotherapeutic proteins

Simon Cubbon Pharma and Biopharma Team Thermo Fisher Scientific Humanized IgG antibody fragment (Fab) | 50,000 Daltons | VH, Cl and VL, CL regions, linked by an intramolecular disulfide bond.

STRUCTURAL INSIGHTS

Biopharma Focus: What We Are Seeing

Industry Challenges

- Regulatory landscape is changing
- Speed, flexibility, quality and cost control: getting it right the first time and every time
- Driving towards continuous production more production analysis
- Simple robust workflows required
- Proving bioequivalence and monitoring batch-to-batch variation
- Increasing biotherapeutic complexity is forcing new methodologies

A Complex Problem: Drug Safety and Quality

Safety Is the product safe to use? (e.g. Immunogenic effects?)

Potency

Does the drug have the expected effect? (e.g. CDR complementation)

Knowledge How do changes effect the therapeutic? (e.g. Oxidation)

Quality

How do changes in process effect the product? (e.g. Glucose concentration on glycoforms)

A Complex Problem: Drug Safety and Quality

- Can we reduce the analytical complexity?
- Can we get this data from fewer methods?
- Can these new methods be simple and robust enough for QC or even Process monitoring?
 - Multi Attribute Methods

One injection?

Peptide Mapping: A Complete Multi-Attribute Method

SMART

- Really easy to use
- Highly reproducible
- Rapid digestions

Separation

- Class leading, biocompatible
- Longer column lifetimes
- Unrivalled reproducibility

Detection

- · Walk-up simplicity
- Minimal instrument contact
- Rock-steady results

Processing

- · Easy to use and learn
- Enterprise & LIMS ready
- Compatible with other vendors instrumentation

Thermo Scientific SMART Digest Kits and Automation

5 different Rituximab Digests by 5 different Seminar Attendees

Peak 1	Peak 2	Peak 3	Peak 4	Peak 5	Peak 6	Peak 7	Peak 8	Peak 9	Peak 10
2.54	2.41	1.89	3.39	3.53	2.16	4.41	2.10	2.10	3.65
Peak 11	Peak 12	Peak 13	Peak 14	Peak 15	Peak 16	Peak 17	Peak 18	Peak 19	Peak 20
1.96	3.51	3.72	2.26	2.91	1.97	3.28	2.62	3.16	1.20

Thermo Fisher

Advantages of MAM

Required CQA Characterizations	Covered by SEC MAM?	CEX	rCE-SDS	nrCE-SDS	HILIC	ID ELISA	HCP ELISA
CDR Tryptophan Degradation	Yes	No	No	No	No	No	No
C-terminal Amidation	Yes	Indirect	No	No	No	No	No
C-terminal Lysine	Yes	Yes	No	No	No	No	No
Cysteine Adducts	Maybe	Maybe	No	No	No	No	No
Deamidation	Yes	Indirect	No	No	No	No	No
Disulfide Isoforms	Maybe	Indirect	No	Yes	No	No	No
Disulfide Reduction	Maybe	No	No	Yes	No	No	No
Fragmentation (Peptide Bond)	Maybe	No	Yes	Yes	No	No	No
Fucosylation	Yes	No	No	No	No	No	No
Galactosylation	Yes	No	No	No	No	No	No
Glycation	Yes	No	Yes	Yes	No	No	No
НСР	Yes	No	No	No	No	No	Yes
High Mannose	Yes	No	No	No	Yes	No	No
Hydroxylysine	Yes	No	No	No	No	No	No
Identity	Yes	Yes	No	No	No	Yes	No
Methionine Oxidation	Yes	No	No	No	No	No	No
Mutations & Misincorporations	Yes	No	No	No	No	No	No
Non-concensus Glycosylation	Yes	No	Maybe	Maybe	No	No	No
Non-glycosylated Heavy Chain	Yes	No	No	No	No	No	No
N-terminal pyroGlutamate	Yes	Indirect	No	No	No	No	No
O-linked Glycans	Maybe	No	No	No	No	No	No
Residual Protein A	Yes	No	No	No	No	No	No
Signal Peptide	Yes	No	No	No	No	No	No
Thioether	Yes	No	No	No	No	No	No
Trisulfide	Maybe	No	No	No	No	No	No
Unusual Glycosylation	Yes	Indirect	Maybe	Maybe	Yes	No	No

Building Targeted List of Critical Quality Attributes

Thermo Fisher SCIENTIFIC

CQA Profiling

CQA Overview

Thermo Fisher

mAb Charge Variant Analysis by CEX pH Gradient Elution

pH gradient elution

- Based on pl of protein
- Loss of retention with progressing pH gradient, depending on pl
- "Single" binding event, trapping at pH < pl (for CEX)

pH Gradient

Ion Exchange Charge

Isoelectric Focusing on a Cation Exchange Column

- mAb binds to cation exchange sites on the column
- A gradient of increasing pH is applied
- mAb is released from the exchange site when the net charge on the mAb is neutral
- This interaction happens once, then the mAb runs through the rest of the column
- Column length has little effect on the resolution
- This is a concentration technique

Trastuzumab pH Gradient with Proprietary Volatile eluents

SCIENTIFIC

12

Direct MS analysis of Trastuzumab by Ion Exchange / Native Intact MS

Glycoform	Theoretical Av. Mass	Experimental Av. Mass	D Mass (ppm)
(GDF)2	148056.2	148055.7	3.4
GDF/GIF	148218.3	148217.6	5.0
GOF/G2F or (G1F)2	148380.5	148380.7	-1.5
G1F/G2F	148542.6	148543.2	-3.9

Conclusions

- Automation of protein digestion for precision and reproducibility in a robust peptide mapping workflow to introduce a MAM
- Volatile pH gradient elution of proteins for CVA has several advantages; global applicability, high loading capacity, easy method transfer, native MS compatibility, simple sample preparation
- Simple parent ion MS at high resolution, allowing on-line positive identifications at intact and peptide level
- One Injection, reliable and robust: several critical quality attributes
- New workflows for the future enabling characterization of several attributes in one injection provides ease of use and time saving

