

1

22nd International REID Bioanalysis Forum

Recent directions in LC-MS adoption for large molecule bioanalysis

Waters – Vision of the Future MS detection Tuesday 5th September 2017

Ian Edwards, Pharmaceuticals Business Development Manager, Waters Corporation ian_edwards@waters.com

http://dmpk.waters.com/en

Outline

- The trend: novel, eclectic modalities
- Peptide & protein bioanalysis workflows
- Insight into adoption of LC-MS for large molecule bioanalysis
- Protein quantification using the surrogate peptide approach
 - Trastuzumab quantification case study: Tandem MS versus HRMS
- "Intact level" Trastuzumab quantification proof of principle
- Summary
- Future perspectives

The Trend: Novel, Eclectic Modalities

THE SCIENCE OF WHAT'S POSSIBLE.

Peptide and Protein Bioanalysis Workflows THE SCIENCE OF WHAT'S POSSIBLE.

Waters

"What is the true concentration?"

"LC-MS/MS-Based Monitoring of In Vivo Protein Biotransformation: **Quantitative Determination of Trastuzumab and Its Deamidation Products in Human Plasma** P. Bults, R. Bischoff, H. Bakker, J. A. Gietema, N. C. van de Merbel, *Anal. Chem.*, **2016**, *88* (3), 1871.

"Deamidation of Trastuzumab at the complementarity determining region (CDR) leads to the loss of recognition of the antibodies used in the ELISA assay"

LC-MS/MS (Tandem MS or HRMS) can provide novel & insightful information, in support of PK studies, that can supplement or replace LBA and is recognized by regulatory bodies

Trastuzumab (Herceptin)

Administration: IV, every 3 weeks Half-life: ~26 days Dose:

- initial 8 mg/kg, maintain 6 mg/kg
- blood volume 75 mL/kg
- circulating conc \sim 6 mg/75 mL = 80 $\mu g/mL$

Monoclonal antibody (~150,000 Da)

- Approved in 1998 in US
- Treatment for HER2 positive breast cancer
- Designed to bind to HER2
 - Activates cells of the immune system
 - Stops HER2 producing signal for tumor cell growth
- Major side effect: heart failure

Representative Trastuzumab Chromatograms

THE SCIENCE OF WHAT'S POSSIBLE."

Trastuzumab Peptide Level Quantification

- Comparing TQ-XS and G2-XS
 - Optimization produced same transition using similar collision energy (CE)
 - \geq 4 linear dynamic range on both platforms
- In general, TQ-XS is 2X more sensitive than G2-XS QTof
 - LOQs 0.01-0.025 μg/mL (TQ-XS) vs. 0.025-0.050 μg/mL (G2-XS)

	FTISA	DTSK	DTYIHWVR		
	Xevo TQXS Tandem MS	Xevo G2XS QTof	Xevo TQXS Tandem MS	Xevo G2XS QTof	
Transition (CE)	485.2 > 721.4 (CE=15)	485.2 > 721.373 (CE=16)	545.3 > 597.3 (CE=24)	545.3 > 597.326 (CE=23)	
LOD (µg/mL)	0.005	0.010	0.025	0.050	
LLOQ (µg/mL)	0.010	0.025	0.025	0.050	
Curve (µg/mL)	0.010 - 250	0.025 - 500	0.025 – 500	0.050 - 500	
Log ₁₀ Range	4.4	4.3	4.3	4	
Linear Fit (R ²)	0.988	0.991	0.992	0.995	
% Accuracy Range	85.0 - 111.6	89.2 - 114.4	89.0 - 108.3	95.5 - 105.6	
Weighting	1/X ²	1/X ²	1/X ²	1/X ²	

©2017 Waters Corporation

Trastuzumab in Mouse Plasma

THE SCIENCE OF WHAT'S POSSIBLE.

Sample preparation: can be simpler than surrogate peptide approach VION (HRMS)

©2017 Waters Corporation

Quantification Results in Mouse Plasma XIC of m/z 2907 with 2 Da window

3250

3250 3500 3750

3250

3250

3250

Plasma blank

 $0.10 \, \mu g/mL$

0.25 µg/mL

 $0.50 \, \mu q/mL$

 $1.0 \,\mu g/mL$

3500 3750

3500

3500 3750 51.5

3500 3750

Spectrum

10

Concentration [µg/mL]

15

20

Sample range: 0.1-50 µg/mL

Injection volume = $1 \mu L$

in $\mu q/mL$

XIC

Comparison of Peptide and Intact Level Quantification

Waters

- Peptide level quantification is \sim 5-25x more sensitive than intact trastuzumab.
- MRM based peptide quantification has wider linear dynamic range than MS scan based quantification (both for peptide and intact).

	FTISADTSK		DTYIHWVR		Intact
	Xevo TQ-XS Tandem MS	Xevo G2-XS QTof	Xevo TQ-XS Tandem MS	Xevo G2-XS QTof	Vion Qtof
LOD (µg/mL)	0.005	0.010	0.025	0.050	0.25
LLOQ (µg/mL)	0.010	0.025	0.025	0.050	0.25
Inj Vol (μL)	8	8	8	8	1
Curve (µg/mL)	0.010 - 250	0.025 - 500	0.025 - 500	0.050 - 500	0.25-25
Log ₁₀ Range	4.4	4.3	4.3	4	2
Linear Fit (R ²)	0.988	0.991	0.992	0.995	0.985
% Accuracy Range	85 - 112	89 - 114	89 - 108	95 - 105	85-118
Weighting	1/X ²	1/X ²	1/X ²	1/X ²	1/X ²

Summary

- HRMS workflows are comparable to traditional tandem LC-MS/MS
- Surrogate peptide: LOQ = 0.01-0.025 µg/mL and >4 orders linear dynamic range
- Intact Level: LOQ = 0.25 μg/mL and 2 orders linear dynamic range
- Sample preparation is especially important for intact level analysis to minimize matrix interferences
- Both peptide and intact level quantification are viable options for measuring protein levels in plasma

LC-MS quantification (Tandem MS or HRMS) using surrogate peptide or intact approaches is complementary to ligand binding assays in the context of bioanalytical strategies

Future Perspectives

SPECIAL FOCUS I Outsourcing strategies in bioanalysis

Panel Discussion Report

For reprint orders, please contact reprints@future-science.com

The changing world of bioanalysis: summary of panel discussions

First draft submitted: 30 March 2017; Accepted for publication: 15 May 2017; Published online: 1 August 2017

Keywords: bioanalysis • outsourcing • pharma-CRO relationship • skills • training

The world of bioanalysis is changing rapidly. The move toward the measurement of sets? Neil Spooner*t-3, Melanie Anderson³, Lieve Dillen⁴, Luca Ferrai⁶, Martijn Hilhorst⁶, Zamas Lam⁷, Marco Michi⁸, James Munday⁹, John Smeraglia¹⁰, Scott Summerfield¹¹ & Dieter Zimmer¹²

"This increase in novel pharmaceutical constructs will increasingly require bioanalysts to have a blend of analytical skills from what have previously been seen to be separate groups in most Pharma and CRO organizations..."

- Small molecule LC-MS experts will develop skills in large molecule analysis
- Those who have utilized immuno-assays will develop skills in LC-MS
- Both groups will need to develop skills in other approaches not currently commonly found in either, for example, HRMS

Editorial

For reprint orders, please contact reprints@future-science.com

Bioanalysis

The heights of biopharmaceutical complexity and the current reach of analytical instrumentation

"The ever increasing complexity of intact protein biopharmaceuticals continues to require ever **increasing sensitivity, quantitative linearity and spectral resolution**"

First draft submitted: 22 May 2017; Accepted for publication: 26 May 2017; Published online: 24 July 2017 Gregory T Roman Senior Research Chemist, Waters Corporation, Milford, MA 01757, USA gregory_roman@waters.com

Keywords: antibody • antibody–drug conjugate • CE-MS • intact protein • LC-ESI-MS • sensitivity

Intact level protein quantification shows promise as seen by emerging proof of concept/principle studies

- What levels of sensitivity & dynamic range are required for "real world" PK studies in pre-clinical?
- Does there need to be universal agreement around standardized data processing routines for intact protein quantification (e.g. summed *versus* deconvolution)?

Educational content

http://dmpk.waters.com/en

FREE WEBINAR

Mini-webinar: Quantification of proteins in complex biological samples by LC-MS/MS

Live event: Thursday 25th May 2017 07:00 PDT | 10:00 EDT | 15:00 BST

Speaker: Rainer Bischoff (University of Groningen)

http://bit.ly/2qZJZNw

Acknowledgements

- Yun Wang Alelyunas
- Henry Shion
- Mary Lame
- Caitlin Dunning
- Gregory Roman
- Jing Fang
- Catalin Doneanu
- Kerri Smith
- Nilini Ranbaduge
- Nikunj Tanna

- Kelly Doering
- Logan Umberger
- YingQing Yu
- Weibin Chen
- Mark Wrona
- Erin Chambers

Merck

- Lisa A Vasicek
- Kevin Bateman