Specific Quantitation of Antisense Oligonucleotides in Plasma Using MSD[®] Electrochemiluminescence, Hybridization-Based ELISA, and HPLC-MS/MS Platforms

Chenyi Pan, Xuesong Chen, Mu Chen, Shaoyi Wang, Halil Erol, Zhiling Zhang, David Citerone, Zhongping (John) Lin Frontage Laboratories, Inc., Exton, PA 19341

INTRODUCTION

Antisense oligonucleotides (ASOs) are short, chemically modified, single-stranded DNA/RNA oligonucleotides that specifically target to genes of interest and regulate target protein biosynthesis. Steered by recent approval of several such drugs¹, ASOs have emerged as a promising therapeutic platform attracting a flock of biopharmaceutical companies². To support the preclinical and clinical investigation of pharmacokinetic behaviors of ASO drugs, it is essential to develop a simple, specific, and sensitive method for accurate quantification of these agents in biological matrices. Frontage Laboratories methods for ASO quantification:

- MSD electrochemiluminescence (MSD ECL)
- hybridization-based ELISA (HELISA)
- HPLC-MS/MS

Here we compare the sensitivity, selectivity, precision, and accuracy of these three detection methods.

MATERIALS AND METHODS

Materials:

ASO analyte: 20-mer oligonucleotide with sequence of 5'-GGC TAA ATC GCT CCA CCA AG-3'³. Capture probe: 3'-biotinylated 29-mer DNA oligonucleotide designed with the first 20-mer sequence from the 3'-end complementary to ASO analyte. Detection probes: 9-mer DNA oligonucleotides complementary to the 5'-end overhang of the capture probe with 5'-end phosphorylated and 3'-end digoxigenin/ruthenium labeled.

MSD[®] ECL and HELISA Methods:

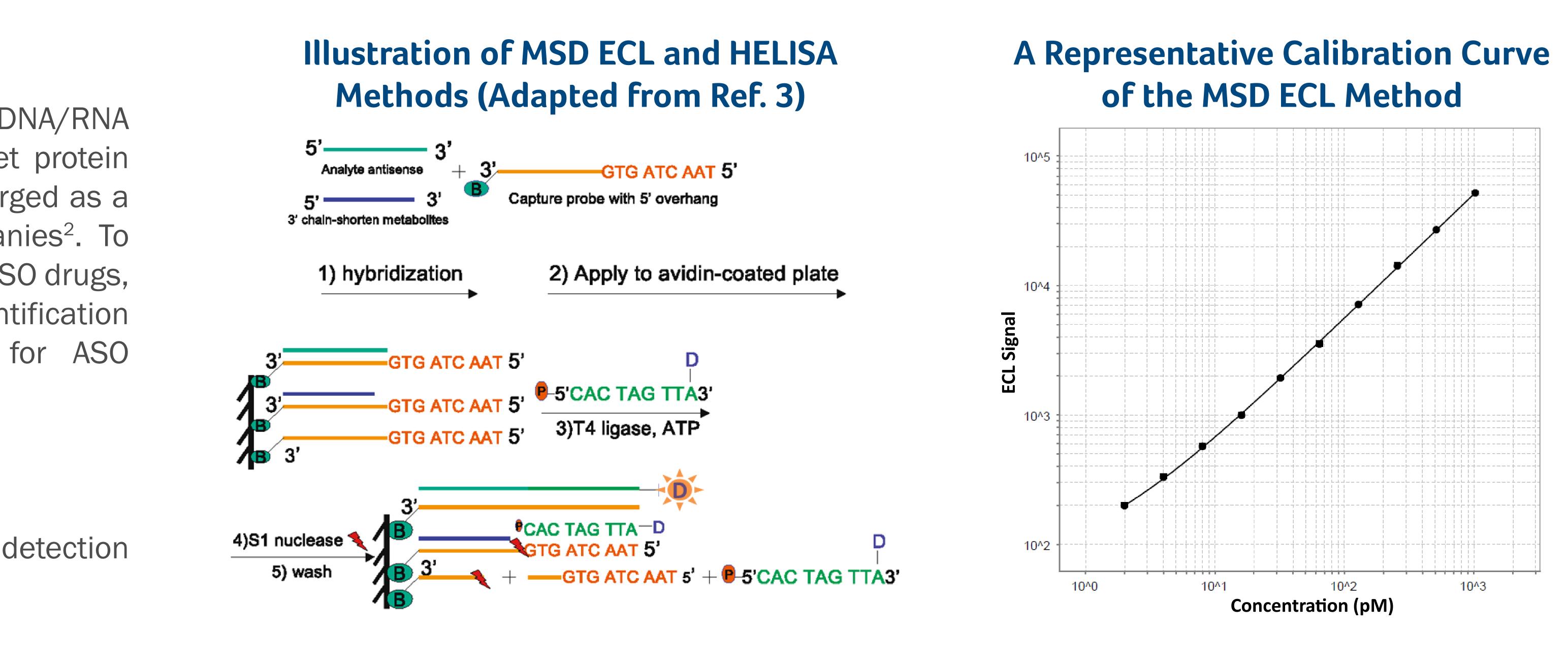
Hybridization buffer containing 2 nM capture probe incubated at 95 °C for 5 min and cooled down immediately on ice to disrupt secondary structures.

Human plasma standards and QCs were mixed with an equal volume of capture probe and incubated at 42°C for 90 min for hybridization.

0.25% Triton-X added to mixture to reduce non-specific hybridization.

90 µL hybridized mixture was loaded onto an MSD-GOLD Streptavidin plate (for MSD ECL) or a NeutrAvidin-coated High Binding Capacity plate (HELISA) and incubated at 37°C for 30

After wash, 100 µL ligation solution containing 7.5 U/mL T4 DNA Ligase, 1 nM detection probe, and 1 mM ATP was added and incubated at 18°C overnight for ligation.


Unligated DNA was removed by treatment with 60 U/well of S1 nuclease for 2 h at 37 °C. MSD plates were read on an MSD Image Sector S 600 in 2X Read Buffer. Digoxigenin-labeled probe was detected and quantitated by an alkaline phosphatase (AP)-conjugated anti-Digoxigenin antibody (1:2,000) and AttoPhos[®] AP Fluorescent Substrate System.

HPLC-MS/MS Method:

A mixture of 50 μ L ASO standards with 50 μ L human plasma, 10 μ L IS, and 900 μ L equilibration buffer (50 mM NH₂OAc, pH 5.5) were loaded to WAX SPE cartridges after conditioning.

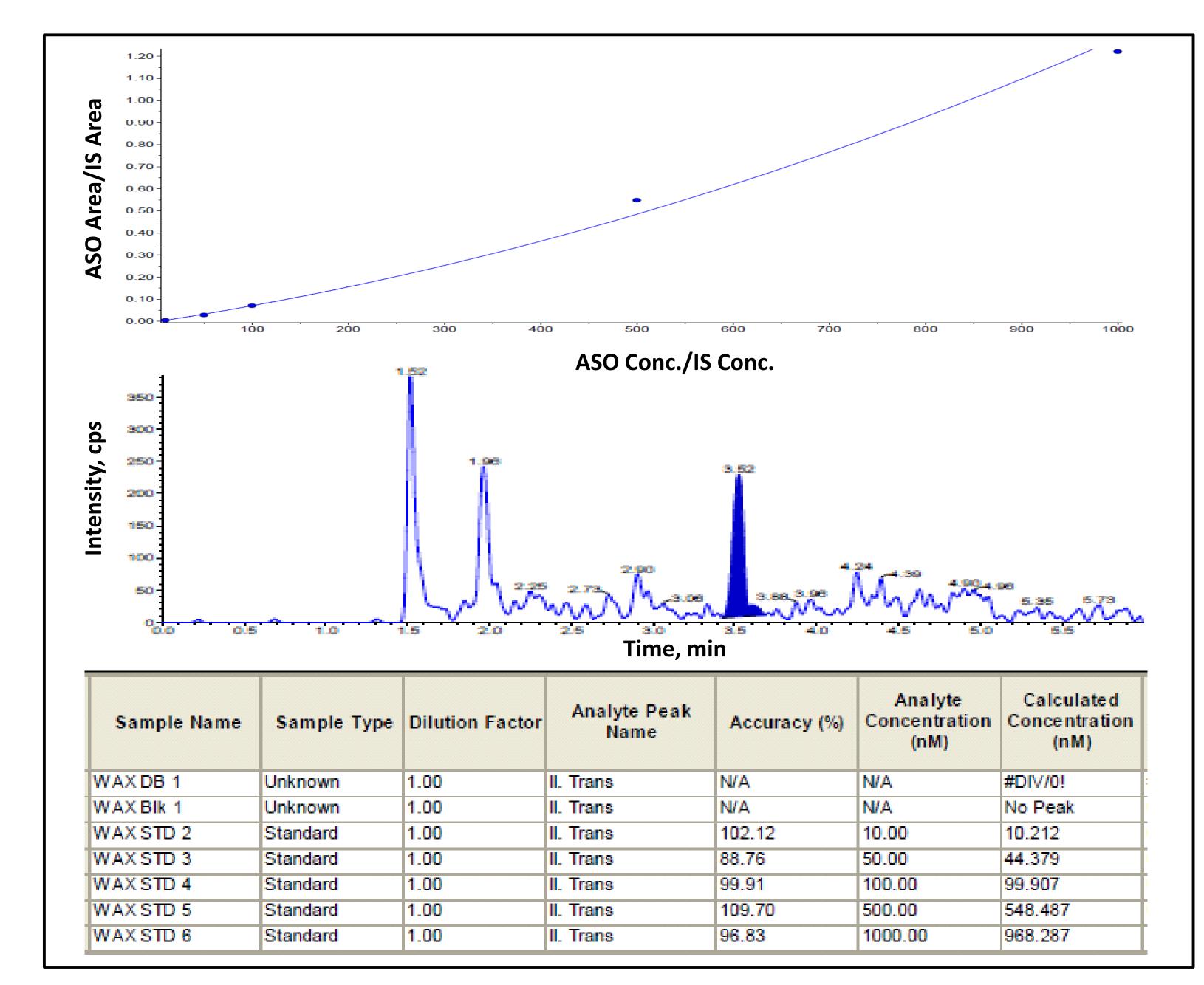
The eluent containing analyte was evaporated to near dryness and reconstituted with 150 μ L of 50 µM EDTA.

 $20 \ \mu L$ of reconstituted solution was injected on HPLC-MS/MS system.

Representative Standard Data of MSD ECL and HELISA

		Std 10					Std 5		Std 3	Std 2	Std 1		SeL	Note	•	ASO Conc.		(
	Conc. (pM)	2.00	4.00	8.00	16.00	32.00	64.00	128.00	256.00	512.00	1024.00		Samples		Conc. (pM)	Found (pM)		
	#1	1.95	4.05	8.07	15.24	31.73	59.64	128.47	259.67	511.01	1021.27		Sel01	LLOQ Level	4.00	3.82	4.5	•
	#2	2.01	4.25	8.33	15.81	32.43	62.77	128.81	267.11	520.26	1019.61		Sel02	LLOQ Level	4.00	3.61	1.3	•
MSD	Intra-run Mean	1.98	4.15	8.20	15.53	32.08	61.21	128.64	263.39	515.64	1020.44		Sel03	LLOQ Level	4.00	3.64	2.5	
ECL	Intra-run SD	0.046	0.141	0.181	0.407	0.495	2.210	0.241	5.261	6.540	1.173		Sel04	LLOQ Level	4.00	3.54	0.4	_
	Intra-run %CV	2.3	3.4	2.2	2.6	1.5	3.6	0.2	2.0	1.3	0.1	MSD	Sel05	LLOQ Level	4.00	3.69	2.9	
	Intra-run %RE	-1.0	3.7	2.5	-3.0	0.3	-4.4	0.5	2.9	0.7	-0.3	ECL	Sel06	LLOQ Level		3.55	1.7	
	#1	1.89	4.26	8.97	16.15	29.25	66.90	127.97	249.13	489.50	876.34		Sel07	LLOQ Level		3.41	4.1	
	#2	2.01	4.43	9.31	16.42	28.83	67.19	125.92	259.83	548.41	1222.61		Sel08	LLOQ Level		3.67	2.9	
HELISA	Intra-run Mean	1.95	4.34	9.14	16.28	29.04	67.04	126.95	254.48	518.96	1049.47		Sel09	LLOQ Level		3.28	0.5	
	Intra-run SD	0.080	0.121	0.241	0.192	0.300	0.203	1.455	7.568	41.660	244.851		Sel10	LLOQ Level		3.34	1.4	
	Intra-run %CV	4.1	2.8	2.6	1.2	1.0	0.3	1.1	3.0	8.0	23.3						0.6	
	Intra-run %RE	-2.6	8.6	14.2	1.8	-9.2	4.8	-0.8	-0.6	1.4	2.5		Sel01	LLOQ Level		3.51		
		•	•										Sel02	LLOQ Level		4.11	2.0	
	Inter-Rur	n Precis	sion ar	Id Acc	uracy	of MSI	D ECL	and HE	LISA (n:	=5)			Sel03	LLOQ Level	4.00	3.67	3.7	-
					MSD	ECL			HE	LISA			Sel04	LLOQ Level	4.00	3.77	1.7	•
Q	C Level C	onc. (pN	Л)	%C\			RE	9	6CV		6RE	HELISA	Sel05	LLOQ Level	4.00	3.79	2.3	•
L	JLOQ	1024.00		3.2			L.O		8.3		6.8		Sel06	LLOQ Level	4.00	3.55	6.1	-
	HQC	768.00		2.2			4		8.9		L3.4		Sel07	LLOQ Level	4.00	3.32	2.6	
	MQC	500.00		2.2).2		6.6		6.6		Sel08	LLOQ Level	4.00	3.63	0.2	•
	LQC	12.00		4.4			2.7		3.8		0.1		Sel09	LLOQ Level	4.00	3.20	2.7	-

		Std 10	Std 9	Std 8	Std 7	Std 6	Std 5	Std 4	Std 3	Std 2	Std 1		SeL	Niata	Spiked ASO	ASO Conc
	Conc. (pM)	2.00	4.00	8.00	16.00	32.00	64.00	128.00	256.00	512.00	1024.00		Samples	Note	Conc. (pM)	Found (pN
	#1	1.95	4.05	8.07	15.24	31.73	59.64	128.47	259.67	511.01	1021.27		Sel01	LLOQ Level	4.00	3.82
	#2	2.01	4.25	8.33	15.81	32.43	62.77	128.81	267.11	520.26	1019.61		Sel02	LLOQ Level	4.00	3.61
MSD	Intra-run Mean	1.98	4.15	8.20	15.53	32.08	61.21	128.64	263.39	515.64	1020.44		Sel03	LLOQ Level	4.00	3.64
ECL	Intra-run SD	0.046	0.141	0.181	0.407	0.495	2.210	0.241	5.261	6.540	1.173		Sel04	LLOQ Level	4.00	3.54
	Intra-run %CV	2.3	3.4	2.2	2.6	1.5	3.6	0.2	2.0	1.3	0.1	MSD	Sel05	LLOQ Level	4.00	3.69
	Intra-run %RE	-1.0	3.7	2.5	-3.0	0.3	-4.4	0.5	2.9	0.7	-0.3	ECL	Sel06	LLOQ Level	4.00	3.55
	#1	1.89	4.26	8.97							876.34		Sel07	LLOQ Level	4.00	3.41
	#2	2.01	4.43	9.31							1222.61		Sel08	LLOQ Level	4.00	3.67
HELISA	Intra-run Mean		4.34								1049.47		Sel09	LLOQ Level	4.00	3.28
	Intra-run SD							1.455			244.851		Sel10	LLOQ Level	4.00	3.34
	Intra-run %CV		2.8	2.6	1.2	1.0	0.3	1.1	3.0	8.0	23.3		Sel01	LLOQ Level		3.51
	Intra-run %RE	-2.6	8.6	14.2	1.8	-9.2	4.8	-0.8	-0.6	1.4	2.5		Sel02	LLOQ Level		4.11
	Inter-Run	Precis	ion an	nd Acc	uracy	of MSI	DECL	and HE	LISA (n:	=5)			Sel03	LLOQ Level		3.67
													Sel04	LLOQ Level	4.00	3.77
QC	C Level C	onc. (pN	/)		MSD		DC	0					Sel05	LLOQ Level	4.00	3.79
		107/00		%C'			RE		6 CV		6 RE	HELISA	Sel06	LLOQ Level	4.00	3.55
		1024.00 768.00		3.2			0 1		8.3 8.9		6.8 L3.4		Sel07	LLOQ Level	4.00	3.32
	HQC MQC	500.00		2.2 2.2			.4		6.6		6.6		Sel08	LLOQ Level	4.00	3.63
	LQC	12.00		2.2 4.4			.z 2.7		.3.8		0.0		Sel09	LLOQ Level	4.00	3.20
	LOQ	4.00			,		1.0		.5.o 3.6		1.3		Sel10	LLOQ Level	4.00	3.66
		7.00		1.5		T _	T .O		5.0		L.J					


A Representative Calibration

Curve of the HELISA Method 20000 n 15000-**₩** 10000-5000-Concentration (pM)

Selectivity Test Results of MSD ECL and HELISA

HPLC-MS/MS Method

pM)	%CV	%RE
•	4.5	-4.4
•	1.3	-9.9
-	2.5	-9.0
-	0.4	-11.5
	2.9	-7.7
	1.7	-11.2
•	4.1	-14.8
,	2.9	-8.2
}	0.5	-18.0
-	1.4	-16.4
•	0.6	-12.4
•	2.0	2.8
,	3.7	-8.3
,	1.7	-5.7
)	2.3	-5.3
	6.1	-11.2
•	2.6	-17.0
	0.2	-9.3
	2.7	-20.0
	0.4	-8.5

10000

DISCUSSION AND CONCLUSION

Frontage has three different platforms for the quantification of ASOs: For our MSD ECL and HELISA methods, the lower limit of detection (LLOD) and LLOQ were found to be 2 pM (12 pg/mL) and 4 pM (24 pg/mL) respectively, the highest sensitivity ever reported. Both assays showed a linear signal increase from 2 pM to 1024 pM and high selectivity in plasma, with 100% passing rate (%RE \leq 20%). Furthermore, by fine-tuning the concentrations of the capture and detection probes we were able to adjust the range of quantification. MSD ECL outperformed over HELISA due to its enhanced precision and accuracy of calibration curves and QCs and dilution linearity (data not shown).

The HPLC-MS/MS method had a sensitivity of 10 nM (61 ng/mL), much lower than that of MSD ECL and HELISA methods. However, as HPLC-MS/MS has an unparalleled high specificity against shortened ASO metabolites, it can serve as a powerful tool for ASO quantification in tissues with drug accumulation.

REFERENCES

1. Khvorov, A. & Watts, J.K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017).

2. McClorey, G. & Wood, M.J. An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr. Opin. Pharmacol. 24, 52–58 (2015).

3. Wei, X. et al., A Specific Picomolar Hybridization-Based ELISA Assay for the Determination of Phosphorothioate Oligonucleotides in Plasma and Cellular Matrices. Pharmac. Res. 23, 1251-1264 (2006).