# Validation of a Polymerase Chain Reaction (RT-qPCR) Method to Quantify a Codon-optimized Human Cystic Fibrosis Transmembrane Conductance Regulator mRNA (CO-hCFTR)

MingLai Cheng<sup>1</sup>, Katherine Domingue<sup>1</sup>, Lihong Gao<sup>2</sup>, Jonathan Abysalh<sup>2</sup>, Teresa White<sup>2</sup>, Susan Zondlo<sup>1</sup>, and John L. Kolman<sup>1</sup> <sup>1</sup>QPS, LLC, Newark, DE, USA and <sup>2</sup>Translate Bio, Lexington, MA, USA



### Introduction

Translate Bio is developing a novel therapeutic messenger RNA (mRNA) designed to enable the in vivo production of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein as a treatment for cystic fibrosis. This approach uses a codonoptimized human CFTR mRNA (CO-hCFTR) to restore healthy levels of CFTR. An RT-qPCR method was designed and developed to detect and quantitate the CO-hCFTR mRNA in lung tissue and whole blood, and validated per ICH Harmonized Tripartite Guidelines.

## Materials and Method Development

The mRNA standard was prepared via in vitro transcription from a synthesized runoff oligonucleotide template with quantity and quality assessment on the Nanodrop 8000 (Thermo Fisher Scientific) and the 2100 BioAnalyzer (Agilent). RT-qPCR was performed on the QuantStudio™ 7 Real-Time PCR System (Thermo Fisher Scientific).

Four primer/probe sets were designed. Assay selection and optimization was performed by testing 45 combinations of forward and reverse primers and probe concentrations with one input amount (e.g. 1 x 10<sup>5</sup> copies) of the transcribed mRNA standard for each of the four designs.

The primer/probe combination having the lowest Cycle threshold  $(C_T)$ , the highest ΔRN (change in fluorescence), and no detectable amplification (within 40 cycles) in the negative controls was chosen to advance to further method development and validation.

Table 1 and Figure 1. Initial Standard Curve of Chosen Assav

| Amplification Plot |             |     |       |  |  |  |  |
|--------------------|-------------|-----|-------|--|--|--|--|
| <b>Copy Number</b> |             | %CV | 1E01  |  |  |  |  |
| 1x10 <sup>1</sup>  | 36.58       | 2.0 |       |  |  |  |  |
| 1x10 <sup>2</sup>  | 33.13       | 0.9 | 1E00  |  |  |  |  |
| 1x10 <sup>3</sup>  | 29.57       | 0.4 | 0.4   |  |  |  |  |
| 1x10 <sup>4</sup>  | 26.16       | 0.5 | 발 0.1 |  |  |  |  |
| 1x10 <sup>5</sup>  | 22.51       | 0.7 |       |  |  |  |  |
| 1x10 <sup>6</sup>  | 18.82       | 1.0 |       |  |  |  |  |
| 1x10 <sup>7</sup>  | 15.42       | 0.5 | 0.01  |  |  |  |  |
| 1x10 <sup>8</sup>  | 12.20       | 0.8 |       |  |  |  |  |
| 8 replicates at    | each level. |     |       |  |  |  |  |

An initial standard curve of 10 to 1 x 10<sup>8</sup> copies was tested to determine detection and quantitation limits.

# **Specificity Results**

**Table 2. Primers/Probe Specificity** 

Assay specificity to the exogenous target mRNA transcript was confirmed by analyzing 100 ng of endogenous total RNA and genomic DNA from various species using the optimized assay concentrations. In all cases, the assay did not amplify the negative controls or background DNA/RNA.

| Matrix                           | <b>Assay Specificity</b> |
|----------------------------------|--------------------------|
| TE pH 8.0                        | Negative                 |
| Nuclease Free Water              | Negative                 |
| 100 ng Yeast tRNA                | Negative                 |
| 100 ng Lambda DNA-HindIII Digest | Negative                 |
| 100 ng Cynomolgus Genomic DNA    | Negative                 |
| 100 ng Cynomolgus Total RNA      | Negative                 |
| 100 ng Human Placental DNA       | Negative                 |
| 100 ng Human Placental RNA       | Negative                 |
| 100 ng Rat Genomic DNA           | Negative                 |
| 100 ng Rat Total RNA             | Negative                 |

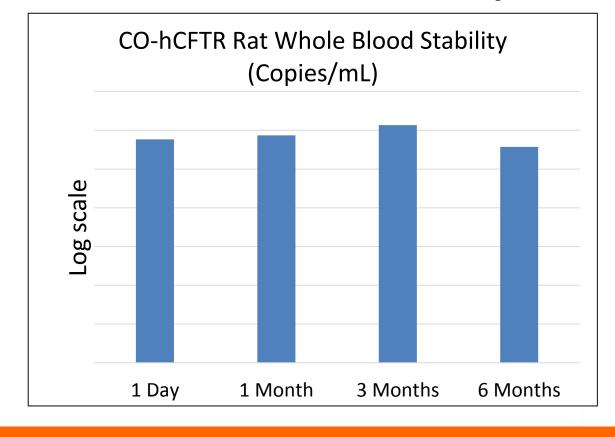
Negative = No amplification in 8 out of 8 wells

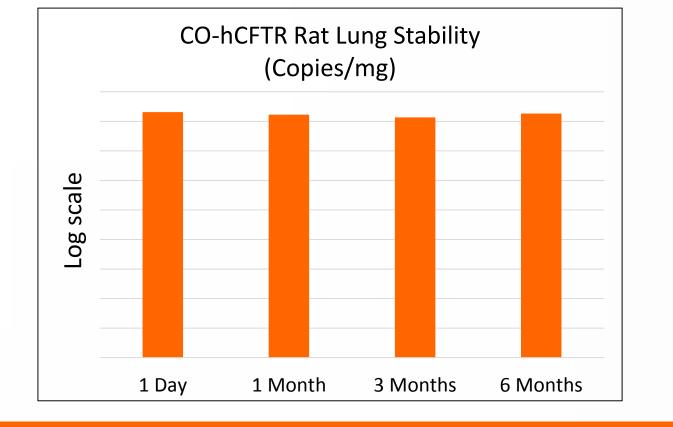
Additional specificity testing was performed against human, mouse, rat, and cynomolgus monkey liver, human lung tissue, and stabilized whole blood (RNAprotect® for animals and Paxgene® for human). Total RNA was extracted from tissue and stabilized whole blood (RNAprotect®) using the automated QIAsymphony SP or the Promega Maxwell RSC®, respectively. Tissue lysates were prepared by QIAGEN TissueLyser and total RNA was extracted on the QIAsymphony SP.

RNA concentration and purity were determined using the Nanodrop 8000. Up to 1 µg of purified RNA was analyzed on the QuantStudio™ 7 Flex Real-Time PCR System via RT-qPCR for absolute quantitation with a standard curve using the optimized assay conditions.

Table 3. CO-hCFTR Assay Specificity in Blank Liver and Stabilized Whole Blood Matrices

|       | Species              | Matrix Type | Sex | Average Mass of<br>Tissue (mg) or<br>Volume of WB (mL) | Average RNA Concentration (ng/μL) | A260/A280 | Copies of Exogenous CO-hCFTR per mg |
|-------|----------------------|-------------|-----|--------------------------------------------------------|-----------------------------------|-----------|-------------------------------------|
|       | Mouse C57-BL/6       | Liver       | M   | 53.1                                                   | 853.8                             | 2.0       | BQL                                 |
|       | Mouse CD-1           | Liver       | F   | 53.0                                                   | 858.1                             | 2.1       | BQL                                 |
|       | Rat - Sprague Dawley | Liver       | M   | 52.0                                                   | 1038                              | 2.1       | BQL                                 |
|       | Rat - Sprague Dawley | Liver       | F   | 52.8                                                   | 1035                              | 2.1       | BQL                                 |
|       | Cynomolgus Monkey    | Liver       | M   | 53.1                                                   | 250.6                             | 2.1       | BQL / 82*                           |
|       | Human                | Liver       | M   | 53.0                                                   | 565.0                             | 2.0       | BQL                                 |
|       | Human                | Whole Blood | M   | 2.5                                                    | 43.51                             | 2.0       | BQL                                 |
|       | Human                | Whole Blood | F   | 2.5                                                    | 42.60                             | 2.1       | BQL                                 |
|       | Cynomolgus Monkey    | Whole Blood | M   | 0.5                                                    | 24.36                             | 1.8       | BQL                                 |
|       | Cynomolgus Monkey    | Whole Blood | F   | 0.5                                                    | 36.79                             | 1.9       | BQL                                 |
| scale | Mouse CD-1           | Whole Blood | M   | 0.5                                                    | 242.5                             | 2.1       | BQL                                 |
| og sc | Mouse CD-1           | Whole Blood | F   | 0.5                                                    | 83.29                             | 2.1       | BQL                                 |
| H     | Rat - Sprague Dawley | Whole Blood | M   | 0.5                                                    | 791.6                             | 2.1       | BQL                                 |
|       | Rat - Sprague Dawley | Whole Blood | F   | 0.5                                                    | 761.4                             | 2.1       | BQL                                 |


In addition, an RT-qPCR quantitation method was established for human endogenous CFTR mRNA. Assay specificity was verified and there was no cross-talk between the COhCFTR mRNA and endogenous hCFTR mRNA quantitation methods.


Table 4. Endogenous CFTR Assay Specificity against Human Lung Tissue

\*One extraction replicate out of six resulted in non-BQL result due to incidental touch contamination.

| Species     | Matrix Type        | Sex      | Donor No.    | Average Mass of Tissue (mg) N=4 | Average RNA Concentration (ng/μL) | A260/A280      | Detection of Endogenous  CFTR per mg  N=4 (*) |
|-------------|--------------------|----------|--------------|---------------------------------|-----------------------------------|----------------|-----------------------------------------------|
| Human       | Lung               | M        | 1            | 23.6                            | 127.5                             | 2.1            | Detected                                      |
| Human       | Lung               | M        | 2            | 24.2                            | 50.1                              | 2.0            | Detected                                      |
| Human       | Lung               | M        | 3            | 22.4                            | 95.4                              | 2.0            | Detected                                      |
| Human       | Lung               | M        | 4            | 22.8                            | 60.8                              | 2.0            | Detected                                      |
| Human       | Lung               | M        | 5            | 23.5                            | 46.6                              | 2.0            | Detected                                      |
| )Detected = | Detected in signif | icant ar | nounts withi | in the assay range.             | Actual copies/ma                  | g excluded for | confidentiality.                              |

Figure 2. in vivo CO-hCFTR Stability in Rat Lung and Whole Blood





### Validation Results

Table 5. RT-qPCR Method Validation Acceptance Criteria

| Parameter                       | Acceptance Criteria                                                                                            |  |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Specificity                     | Confirmed by meeting acceptance criteria stated in System Suitability.                                         |  |  |  |  |
|                                 | Slope: $\leq$ -3.1 and $\geq$ -3.6 and Correlation Coefficient: $ r  \geq 0.980$ (or $r^2 \geq 0.96$ ).        |  |  |  |  |
| Linearity and Range of          | Standards: Accuracy of valid wells will be $\leq 0.3$ for the $\log_{10}$ concentrations.                      |  |  |  |  |
| the Standard Curve              | The %CV of Precision will be $\leq 6.5 \%$ for the C <sub>T</sub> values.                                      |  |  |  |  |
|                                 | A minimum of 5 standards must be used for the standard curve.                                                  |  |  |  |  |
| Precision (Repeatability)       | The %CV of Intra-Assay Variability log <sub>10</sub> will be ≤ 20 % for Precision Controls.                    |  |  |  |  |
| Internaciate Dresiaion          | The %CV of Inter-Analyst/Inter-Day log <sub>10</sub> will be ≤ 20 % for Precision Controls.                    |  |  |  |  |
| Intermediate Precision          | The %CV of Inter-Reagent/Equipment $\log_{10}$ will be $\leq 20$ % for Precision Controls.                     |  |  |  |  |
| Accuracy                        | The $log_{10}$ for the Precision Controls will be $\leq 0.50$ from the expected value.                         |  |  |  |  |
| <b>Detection Limit (DL) and</b> | Two of three sample wells must show amplification ( $C_T$ value < 40).                                         |  |  |  |  |
| <b>Above Detection Limit</b>    | Inter-Analyst/Inter-Day: $\geq$ 95% of DL and ADL samples must show amplification ( $C_T$ value < 40).         |  |  |  |  |
| (ADL) Precision                 | Inter-Reagent/Equipment: $\geq$ 95% of DL and ADL samples must show amplification (C <sub>T</sub> value < 40). |  |  |  |  |
|                                 | Two of three No Template Control (NTC) samples must have a $C_T$ value of Undetermined.                        |  |  |  |  |
| System Suitability              | Two of three NEG wells must have a $C_T$ value of Undetermined or have a $C_T$ greater than the $C_T$ .        |  |  |  |  |
|                                 | The DL must be greater than or equal to the average $C_T$ value for the ADL by a minimum of 2 $C_T$ s.         |  |  |  |  |
|                                 | A minimum of 5 standard levels of standard curve must remain after outlier removal.                            |  |  |  |  |
| Run acceptance is based i       | upon Standard Curve and System Suitability performance.                                                        |  |  |  |  |

#### **Table 6. Validation Standard Curve Performance**

Based on the Method Development results, the Detection Limit (DL) was estimated to be 25 copies, and a standard curve range from 25 to 25 x 10<sup>6</sup> copies was evaluated.

|                 | Standar    | d Curve:   | Linearity       | System Suitability/Specificity |         |          |  |
|-----------------|------------|------------|-----------------|--------------------------------|---------|----------|--|
| Run             | Slope      | r²         | y-<br>intercept | No. of Standards               | NTCa    | NEGª     |  |
| 3               | -3.419     | 0.9994     | 39.44           | 7                              |         |          |  |
| 2               | -3.446     | 0.9990     | 39.67           | 7                              |         |          |  |
| 1               | -3.423     | 0.9993     | 39.74           | 7                              |         |          |  |
| <sup>a</sup> ir | ndicates 3 | 3 out of 3 | wells had       | C <sub>T</sub> value of "      | undeter | rmined." |  |

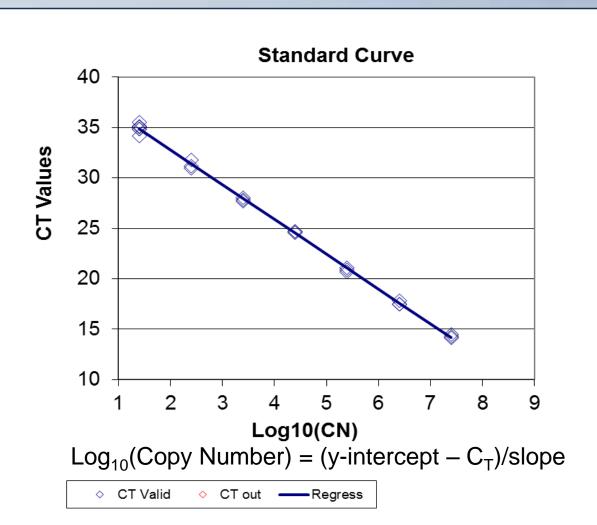



Table 7. Intermediate Precision: Inter-Reagent/Equipment and Inter-Day/Analyst

Precision Controls (PCs) of template mRNA prepared in yeast tRNA/TE at concentrations of  $5 \times 10^{1}$ ,  $5 \times 10^{3}$ , and  $5 \times 10^{5}$  copies/ $\mu$ L.

|   | 1   | Inter-Reagent,             | /Equipment Lo              | g (CN)                     | Inter-Analyst/Day Log (CN) |                            |                            |                            |  |
|---|-----|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--|
|   | Run | PC1<br>5 x 10 <sup>1</sup> | PC2<br>5 x 10 <sup>3</sup> | PC3<br>5 x 10 <sup>5</sup> | Run                        | PC1<br>5 x 10 <sup>1</sup> | PC2<br>5 x 10 <sup>3</sup> | PC3<br>5 x 10 <sup>5</sup> |  |
| Ī |     | 1.8                        | 3.8                        | 5.8                        |                            | 1.8                        | 3.7                        | 5.8                        |  |
|   | 2   | 1.7                        | 3.8                        | 5.8                        | 1                          | 1.8                        | 3.7                        | 5.8                        |  |
|   |     | 1.8                        | 3.8                        | 5.8                        |                            | 1.8                        | 3.8                        | 5.7                        |  |
|   |     | 1.5                        | 3.5                        | 5.7                        |                            | 1.8                        | 3.8                        | 5.8                        |  |
|   | 3   | 1.5                        | 3.5                        | 5.7                        | 2                          | 1.7                        | 3.8                        | 5.8                        |  |
|   |     | 1.5                        | 3.6                        | 5.7                        |                            | 1.8                        | 3.8                        | 5.8                        |  |
|   | %CV | 9.2                        | 4.1                        | 1.0                        | %CV                        | 2.3                        | 1.4                        | 0.7                        |  |

### **Table 8. Accuracy of Quantitation**

|     |                        | PC1                                                |                        | PC2                                                | PC3                    |                                                    |  |
|-----|------------------------|----------------------------------------------------|------------------------|----------------------------------------------------|------------------------|----------------------------------------------------|--|
| Run | Log <sub>10</sub> (CN) | Log <sub>10</sub> (CN)<br> Expected-<br>Calculated | Log <sub>10</sub> (CN) | Log <sub>10</sub> (CN)<br> Expected-<br>Calculated | Log <sub>10</sub> (CN) | Log <sub>10</sub> (CN)<br> Expected-<br>Calculated |  |
|     | 1.5                    | 0.5                                                | 3.5                    | 0.5                                                | 5.7                    | 0.3                                                |  |
| 3   | 1.5                    | 0.5                                                | 3.5                    | 0.5                                                | 5.7                    | 0.3                                                |  |
|     | 1.5                    | 0.5                                                | 3.6                    | 0.4                                                | 5.7                    | 0.3                                                |  |
|     | 1.8                    | 0.2                                                | 3.8                    | 0.2                                                | 5.8                    | 0.2                                                |  |
| 2   | 1.7                    | 0.3                                                | 3.8                    | 0.2                                                | 5.8                    | 0.2                                                |  |
|     | 1.8                    | 0.2                                                | 3.8                    | 0.2                                                | 5.8                    | 0.2                                                |  |
|     | 1.8                    | 0.2                                                | 3.7                    | 0.3                                                | 5.8                    | 0.2                                                |  |
| 1   | 1.8                    | 0.2                                                | 3.7                    | 0.3                                                | 5.8                    | 0.2                                                |  |
|     | 1.8                    | 0.2                                                | 3.8                    | 0.2                                                | 5.7                    | 0.3                                                |  |
|     | <b>Expected Lo</b>     | $g_{10}$ (CN) = 2.0                                | <b>Expected Lo</b>     | $g_{10}$ (CN) = 4.0                                | <b>Expected Lo</b>     | $g_{10}(CN) = 6.0$                                 |  |

#### **Expected Log10(CN) calculations:**

 $Log10(1x10^6) = 6.0$ 

PC1 is at 1x10<sup>2</sup> CN (2  $\mu$ L at 5 x 10<sup>1</sup> copies/ $\mu$ L).  $Log10(1x10^2) = 2.0$ PC2 is at 1x10<sup>4</sup> CN (2  $\mu$ L at 5 x 10<sup>3</sup> copies/ $\mu$ L).  $Log10(1x10^4) = 4.0$ PC3 is at 1x10<sup>6</sup> CN (2  $\mu$ L at 5 x 10<sup>5</sup> copies/ $\mu$ L).

# Conclusions

- An RT-qPCR assay method was designed, developed and validated for quantifying an mRNA therapeutic for cystic fibrosis.
- Method Validation Acceptance criteria was met for Specificity, Linearity and Range, Precision, Intermediate Precision, Accuracy, and System Suitability.
- Because specificity was demonstrated against endogenous total RNA (inclusive of endogenous CFTR mRNA) extracted from naïve human, rat, monkey, and mouse liver tissue, human lung, and stabilized whole blood, this assay may be used in any of these sample types.
- With test article stability established up to 6 months in stabilized whole blood and flash frozen tissue, this method may be used to measure CO-hCFTR in pre-clinical and clinical trials for toxicology, pharmacokinetics and biodistribution.

Correspondence: susan.zondlo@qps.com Tel: +1 302 453 5911