

Determination of an Endogenous Biomarker - 4β-Hydroxycholesterol in K₂EDTA Human Plasma by LC-MS/MS

Weisheng Lin¹; Wei Zhang¹; Weimin Wang; Jing Ke¹; Harry Zhao¹; Zhongping (John) Lin¹; Mike-Qingtao Huang²; Naidong Weng² ¹Frontage Laboratories, Inc., Malvern, PA 19355; ²Johnson & Johnson Pharmaceutical R & D, LLC, Raritan, NJ

Novel Aspects

A sensitive LC-ESI-MS/MS method for determination of 4β -Hydroxycholesterol (4 β -HC) as low as 5 ng/mL using picolinic acid as the derivatization reagent.

Introduction

4β-HC has been proposed as a new endogenous biomarker for cytochrome P450 3A (CYP3A) activity with potential use in drug development. Therefore, a robust and reliable method for accurate determination of 4β-HC in human plasma is crucial. A successful method for accurate quantification of 4β-HC in K₂EDTA human plasma by LC-ESI/MS/MS was developed and validated in our lab using 4β-HC-d₇ as the internal standard (IS).

Figure 1. Chemical Structures of 4β-HC and 4β-HC-d7 (IS)

4β-Hydroxycholesterol

Methods

Sample Preparation Procedure

4β-HC and IS in K₂EDTA human plasma (50 μL) were extracted with hexane after alkalizing with 1M potassium hydroxide (KOH) for 30 minutes at 37°C. After completely drying of organic phase, 4β-HC and IS were derivatized with picolinic acid into picolinyl esters (30 min @ RT). The resulting sample was extracted again with hexane and 1000 μL of recon. solution was added after completely drying of organic phase. 5 μL was injected and analyzed using LC/MS/MS.

Standard and QC sample Preparation Working Standards and LLOQ samples were

Working Standards and LLOQ samples were prepared in H₂O. Other QC samples were prepared in human plasma by spiking additional amount of 4β-HC after the baseline level was established in the pooled plasma.

Interference test

 4β -HC was completely separated from 8 commercially available isomers of 4β -HC and 4α -HC which was synthesized in our lab on Shimadzu UFLC system. There was no interference observed.

Figure 2. Derivatization Reaction

Chromatographic Conditions

Column: Thermo Hypersil Gold, 50 x 2.1 mm, 1.9 μ m Mobile Phase A: 0.1% Acetic Acid in H₂O Mobile Phase B: 0.1% Acetic Acid in ACN Flow Rate: 0.4 mL/min, gradient Injection Volume: 5 μ L Column Temperature: 40°C Run time: 12 min

Mass Spectrometric Conditions

MS: Sciex API 4000 Triple Quadrupole Interface: TurbolonSpray Detection mode: Positive ion, MRM MRM Transitions: 4β-HC m/z 613.5→490.4 4β-HC-d₇ (IS) m/z 620.5→497.4

Results

Matrix Effects • 1.06 ± 0.02 at 150 ng/mL (%CV 1.9%)

Dilution Integrity

20-fold

water

Figure 3. Standard Curve of 4β-HC in

Figure 5. Chromatogram of LLOQ (5 ng/mL) Figure 6. Typical Chromatogram of Mid-QC

Table 1. Table 5. Back-Calculated Concentrations of 4β-HC Calibration Standards

Run ID	4β-Hydroxycholesterol Concentration, ng/mL									
	5	10	25	100	200	300	400	500		
Mean	5.211	9.211	23.846	99.001	190.779	308.404	423.309	519.771		
SD	0.103	0.441	0.731	1.469	6.949	9.600	12.638	9.632		
%CV	2.0	4.8	3.1	1.5	3.6	3.1	3.0	1.9		
%Nominal	104.2	92.1	95.4	99.0	95.4	102.8	105.8	104.0		

	Concentration (ng/mL)	15	150	380
	n	6	6	6
Introvun 1	Mean	13.68	142.13	375.69
intrarun-1	%CV	3.4	3.5	3.0
	%Nominal	91.2	94.8	98.9
	n	6	6	6
Introvin 2	Mean	13.07	134.99	367.8
intrarun-z	%CV	8.1	1.8	2.0
	%Nominal	87.2	90.0	96.8
	n	6	6	6
Intrarun-3	Mean	13.74	133.6	377.2
	%CV	5.7	5.4	4.4
	%Nominal	91.6	89.1	99.3
	n	18	18	18
Intorrun	Mean	13.76	136.8	373.9
merrun	%CV	6.2	4.1	3.0
	%Nominal	01 7	01.2	08 /

Table 3. Stability Summary

Stability Conditions	Minimum Stability		
Processed Sample Stability	At least 74 Hours @RT		
QC LT Stability	At least 145 days @ -20 °C		
QC Bench-top Stability	At Least 16 hours @ RT		
Refrigerator Stability in DBS	At Least 11 Days at 4 °C		
QC Freeze (-20 °C)/Thaw Stability	At least 3 cycles		
Whole Blood Stability	At least 30 minutes @ RT		
Whole Blood Stability	At least 120 minutes @ 0-4 °C		
Stack Solution in MoOH	At least 90 days @ -20 °C		
SLOCK SOLUTION IN MECH	At least 16 hours @ RT		

Conclusions

- A highly sensitive, selective, and rugged LC-MS/MS method was developed and validated using picolinic acid as the derivatization reagent.
- 2. The derivatization conditions were optimized and reaction was completed with 30 min incubation at RT.
- Water was used as the surrogate for human plasma to prepare working standards since 48-HC is an endogenous compound. QCs were prepared in human plasma to mimic incurred samples.
- 4. 4 β -HC was completely separated from 8 commercially available isomers of 4 β -HC and 4 α -HC which was synthesized in our lab.
- 5. Method validation data met the validation acceptance criteria defined in the method validation protocol.

References

 Honda A, et al. Highly sensitive analysis of sterol profiles in human serum by LC-ESI-MS/MS. J Lipid Res. 2008 Sep;49(9):2063-73.