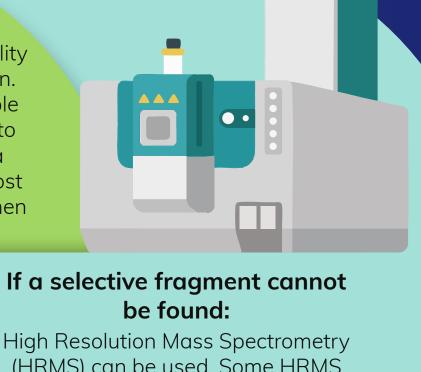


Method development for small molecules: a step-by-step guide

Method development begins with selecting a solvent in which the target analyte is both

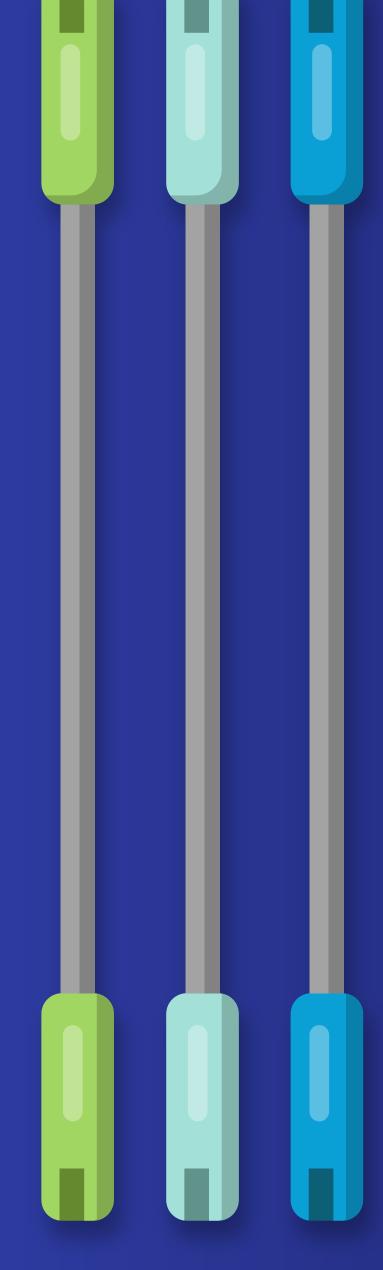
soluble and **stable**. Once this is established, the molecule should be tuned on the most appropriate platform based on the sensitivity requirements of the assay.


Many newer instruments have the capability to reach these very low limits of detection. The mass spectrometer — typically a triple

If a low pg/mL detection

limit is required:

quad — conditions should be optimized to find the most abundant fragment and a potential backup fragment in case the most abundant has selectivity interferences when extracted from matrix.


(HRMS) can be used. Some HRMS instruments are not capable of accurate

quantitation, however advanced technology has been shown to provide acceptable accuracy and precision for small molecules.

• The column selection should be based on

chromatography (LC) method should be developed

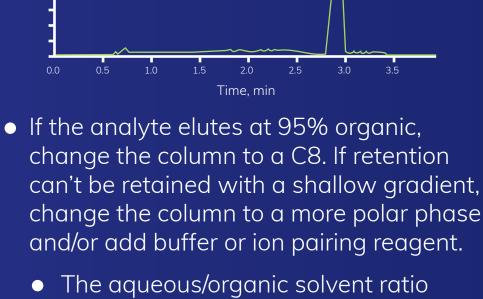
Once the MS method has been established, the liquid

A C18 column with 0.1% formic acid in water (mobile phase A) and Acetonitrile 0.1% formic acid (mobile phase B) should be tested first.

the lipophilicity of the analyte, which is

compounds where a chemical structure is

sometimes unknown for novel


This column and mobile phase are used in many small molecule methods, allowing the platform to be used for multiple methods without switching the column or mobile phases.

A good starting gradient at T=0 is 5%

T=3 minutes.

mobile phase B, ramping up to 95% at

- The retention factor for the analyte should be >5 with adequate peak shape. The gradient should be altered to increase the retention if necessary.
 - 2.85

40 μL.

Extraction method development criteria

should be tested to verify good peak

shape at an injection volume of up to

Samples for

analysis

Enough sample

should be available

Extraction method development should start with simple protein precipitation methods,

advancing to liquid/liquid extractions or solid phase extraction if necessary.

Sample volume

The assay should be

Once the extraction method is developed, selectivity, matrix

stability and matrix

effects should

be tested.

The developed

method may then be

transferred to an

automated sample

extraction system.

Precipitation

volume

Internal standard Should be added in a small volume immediately after the sample is aliquoted for extraction.

potassium oxalate anticoagulant.

If enzymatic instability

is observed:

the plasma should be stabilized

with an enzyme inhibitor, i.e.,

sodium fluoride, dichlorvos or

If chemical instability

is observed:

the plasma should be stabilized

with the addition of acid.

Automated sample extraction systems Automated sample extraction system

Automated sample extraction systems are capable of tracking entire batch processing with an integrated barcode reader. Many systems are installed with a tube decapper, shaker, evaporator, positive pressure manifold and centrifuge, and can process multiple plates to completion. Additionally, systems may aliquot samples (clot detection enabled), dilute samples and add the

aliquot samples (clot detection enabled), dilute samples and add the internal standard.

Scan the QR code to find out more about

This infographic has been created as part of a Bioanalysis Zone feature with Alturas Analytics.

Alturas Analytics' services.

