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Introduction

Leveraging algorithms and machine learning
for unsupervised flow cytometry data analysis

The evolution of flow cytometry technology has significantly expanded the complexity of assays.
While conventional instruments enabled incremental increases in fluorophore usage for over a
decade, the recent adoption of spectral flow cytometry has accelerated this trend dramatically.
Assays have shifted from 8-color configurations to high-parameter panels, with most clinical trial
workflows now utilising 18- to 25-color instruments. These high-complexity panels deliver deeper
biological insights and support a broader range of reportables, but they also introduce substantial
challenges for data analysis. With spectral flow cytometry now integrated into ICON’s global
capabilities, the volume and dimensionality of data per sample continue to grow. To address this

complexity, we are actively developing and implementing semi-automated analysis pipelines
that incorporate advanced algorithms. These approaches enable unsupervised clustering,
dimensionality reduction, and overall improvements in data quality, ensuring robust and scalable

workflows for high-dimensional datasets.

Flow cytometry is a powerful technology for cellular
analysis that combines laser-based detection with
fluorophore-conjugated antibodies to identify cell
subsets and characterise their properties. Since

its inception, the number of detectable parameters
has grown dramatically—from just two colors in
early instruments to more than 40 today—driven

by advances in cytometer hardware and the
development of novel fluorophores. Spectral flow
cytometry now enables panels with 45 or more
colors (e.g., OMIP-102 and OMIP-109), significantly
increasing the dimensionality of data generated. In
practice, this translates into hundreds of reportable
parameters per sample; for example, panels of 15-20
colors have already produced over 200 reportables,
and spectral flow cytometry is expected to push
these numbers even higher.

Traditionally, data analysis relies on manual gating,
where cell subsets are identified by drawing gates on
two-dimensional plots (dot plots) of marker expression
- such as CD4 versus CD8. While templates and
expert analysts help standardise this process, it
remains time-consuming, subjective, and prone to
variability. As panel complexity increases, the number
of required plots and gates grows exponentially,
making conventional gating increasingly impractical
for high-parameter assays.

Fortunately, the evolution of flow cytometry has
been accompanied by significant advances in
computational algorithms and bioinformatics tools
that support and partially automate data analysis.
These algorithms not only facilitate clustering and
dimensionality reduction but also improve data
quality through automated QC and cleanup. Many
of these tools are integrated into commercial
software platforms widely used in pharmaceutical
and CRO environments, such as FCS Express and
OMIQ, which allow users to build analysis pipelines
combining multiple algorithms. However, to fully
leverage these capabilities- especially for custom
workflows- programming expertise is often required,
as most advanced flow cytometry analysis tools are
developed in R.
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A data analysis pipeline may include the following steps:

Removal of detector-based margin events

Data clean-up based on parameters such
as dynamic range and flow rate

Data normalisation to mitigate batch effects
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The potential of such pipelines is substantial. They
not only deliver significant time savings but can

also enhance the overall quality, consistency, and
reproducibility of the reported data. By reducing
manual intervention and variability, these approaches
support more robust and scalable workflows—
critical for high-dimensional assays in regulated
environments.

Doublet removal

Clustering and dimensionality reduction

Visualisation and export of processed data
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In this paper, we aim to provide an overview of
current capabilities and share our experience
and perspective on the use of algorithms and
unsupervised data analysis tools. We present a
case study that illustrates the potential of these
approaches while addressing the challenges of
implementing (semi-)Jautomated pipelines within a
regulated framework.

Growth of fluorophores used in flow cytometry assays (1970-2025)
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Figure 1. Evolution of fluorophore use in flow cytometry assays since the early use of flow cytometry
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Implementing analysis pipelines for flow cytometry data analysis

As flow cytometry assays become more complex, there is growing interest in building structured analysis
pipelines that go beyond manual gating. A wide range of algorithms have been developed specifically for flow
cytometry data processing, and many are available within analysis software such as FCS Express. These
algorithms can be grouped into categories like quality control, data normalisation and clean-up, clustering, and
dimensionality reduction, each addressing a different challenge in managing high-dimensional datasets. In this
section, we provide an overview of selected tools and approaches, highlighting how they could fit into future workflows.

Quality control and margin removal:
Cleaning up before analysis

Before performing clustering or visualisation, it’s
essential to make sure the data is clean and reliable.
Quiality control tools help identify and remove anom-
alies that can creep in during acquisition—issues

like clogs, bubbles, fluctuations in flow rate, or elec-
tronic noise. These problems aren’t always obvious
and can distort downstream analyses, which is why
computational approaches are so valuable. Popular
tools include FlowAl, FlowCut, and PeacoQC, each
using slightly different strategies but sharing the same
goal: leveraging raw data characteristics to flag and
remove problematic regions in the data. Most of
these algorithms assume that a well-acquired dataset
should have stable fluorescence levels and flow rates
throughout the acquisition. By dividing data into seg-
ments (or “buckets”) and comparing patterns across
them, they can detect irregularities and either remove
or flag outlier events. A few tools are summarised
below:

— PeacoQC (Peak Extraction And Cleaning
Oriented Quality Control) was introduced
by Emmaneel et al. in 2022 and works on
transformed, compensated/unmixed data. It
identifies density peaks in marker expression
and filters out peaks with aberrant values,
making it particularly useful for complex panels.

—  FlowAl, published by Monaco et al. in 2016,
evaluates three properties in the data: flow
rate, signal acquisition, and dynamic range.

[t removes regions with unstable flow or
signal fluctuations and trims events outside
the dynamic range, ensuring only high-quality
data remains.

— FlowCut, detailed in Meskas et al., takes
a slightly different approach by segmenting
events along the time axis and applying
statistical tests to detect abrupt shifts or
irregular fluorescence patterns. This makes
it effective for cleaning datasets affected by
clogs or instrument instability.

As panels grow and datasets scale, automated QC
becomes indispensable—not just for saving time but
for ensuring reproducibility and confidence in the
results. By starting with clean data, we set the stage
for accurate clustering, dimensionality reduction, and
all downstream analyses.

Data normalisation: Keeping variability
in check

After clean-up and quality control, the next step in
many analysis pipelines is data normalisation. The
goal here is to: remove non-biological variability so
that differences in the data truly reflect biology, not
technical noise. This is especially important in clinical
studies where samples may be processed across
different runs, instruments, or laboratories. Without
normalisation, these technical differences can mask
real biological signals or negatively impact clustering
or gating.

The challenge and requirement is to apply
normalisation in a way that it corrects technical
variance while preserving biological differences.
Several tools have been developed for this purpose,
including gaussNorm, CytoNorm, and cyCombine,
each with its own strengths and limitations. For a
high-level comparison of these algorithms, see Table
1 below. In the case study presented in this paper, we
applied CytoNorm to a 25-color phenotyping assay
focused on reporting subsets, and observed that the
algorithm very effectively aligns marker intensities between
batches, thereby supporting clustering reproducibility.
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As panels grow and studies scale across multiple sites, normalisation becomes more than a technical detail—
it’s a critical step for reproducibility and confidence in the data. By standardising this process, we can ensure
that downstream analyses like clustering and dimensionality reduction start from a level playing field, making
insights more reliable and easier to interpret.

Table 1

Control samples Cross-batch
; Cell-type aware ) -
required integration

Description

Per-channel landmark-

based normalisation Optional — predefined
gaussNorm aligning signal landmarks or automatic

distributions; fast and peak detection

simple for flow cytometry

Yes — aligns channel
No — treats all cells distributions across
uniformly batches (assumes

comparable biology)

Learns normalisation
per cell subset using Yes — requires control Yes — cluster-aware
CytoNorm FlowSOM clusters and q (FlowSOM-based, not
] samples in each batch ) . )
control samples; well biologically supervised)
suited for clinical studies

Yes — model-based
batch correction using
learned cluster-specific
transformations

Empirical Bayes—based

batch correction

and integration No — works without
across batches and technical replicates
technologies, without

shared controls

Yes — optionally cell-type  Yes — harmonises feature
aware via clustering or space across batches
metadata and modalities

cyCombine

Doublet removal: An unsupervised approach

Doublets - events where two or more cells pass through the interrogation point simultaneously - can introduce
artifacts that distort marker expression and compromise clustering accuracy. While doublet exclusion is
straight-forward in conventional gating, automated solutions are available, providing ease of use, and consistency.

Algorithmic approaches detect doublets based on signal patterns and statistical anomalies rather than predefined
gates. For example, the RemoveDoublets() function in the PeacoQC package applies predefined Median
Associated Distances (MAD) to the SSC-parameters to exclude doublets effectively. This helps keep the dataset
clean and ensures that subsequent analysis focuses on true single-cell events.

Figure 2. Example of doublet removal using PeacoQC RemoveDoublets(). The left image shows a sample pre-removal, and the right
image shows the same sample after the automated doublet removal algorithm.
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Clustering: Moving beyond manual gating

Clustering is all about finding patterns in the data without telling the algorithm what to look for—a big shift from
traditional manual gating. Instead of drawing gates by hand in the analysis software, clustering automatically
groups cells based on similarities across all markers, saving time and reducing bias. For example, FlowSOM
uses self-organising maps to handle large, complex datasets efficiently, while K-means offers a simple, fast
way to partition data into clusters. Another tool, Phenograph, uses graph-based approaches to uncover rare
populations and subtle differences that manual gating might miss. Together, these algorithms make it possible
to explore cellular diversity at a scale and depth that was previously out of reach. In short, clustering is a
critical component of automated workflows - turning complexity into clarity and freeing scientists to focus on
interpretation rather than working through the data manually. For a quick comparison of these algorithms, see
Table 2 below.

As datasets grow larger and panels become more complex, clustering is no longer just an efficiency tool—it’s
a necessity for reproducibility and scalability. By reducing human bias and standardising the analysis, it helps
CROs and research teams deliver consistent, high-quality results across high-complexity flow cytometry studies.

Table 2

&3 Strengths Limitations Runtm?(? J
parameters scalability

Algorithm Core approach

Very fast on

Self-organising map I ) Sensitive to grid/
X Grid size, large datasets; ) :

to project data onto a meta-cluster choice;  Fast, near-linear;
FlowSOM . metacluster captures : i

grid, followed by meta- . may miss rare scales to millions of cells

: number hierarchy; good
clustering L subsets
visualisation
Iteratively partitions . Assumes spherical
. Simple, very . .

data into k clusters o o clusters; poor Very fast; handles large
K-means R o K, initialisation fast; widely )

by minimising within- | ON NON-CONVEX; n easily

) available .
cluster variance sensitive to k
Builds k-NN graph and . Detects Computationally Modgrate heavy;
L k, metric, complex and heavy; memory practical up to ~1-2M
Phenograph  detects communities : S e )
: . X resolution rare populations; intensive; cells; may need
using Louvain/Leiden ) " )
shape agnostic  sensitive to k subsampling

Dimensionality reduction: Making complexity visible

Building on clustering, dimensionality reduction takes things a step further by turning complex, high
dimensional data into something we can actually see and interpret. Dimensionality reduction algorithms create
intuitive two-dimensional maps that reveal patterns and relationships at a glance. t-SNE has been a favorite
for years because it does a great job showing local structure—helping us spot subtle differences between

cell populations. UMAP builds on that idea but adds speed and scalability, while also preserving more of the
global picture, which makes it ideal for larger datasets. Together, these tools transform raw numbers into visual
maps of cellular diversity, making interpretation of the data much easier. In modern workflows, dimensionality
reduction isn’t just a nice visualisation trick—it’s a critical bridge between complex data and meaningful
insights. For a side-by-side look at t-SNE, UMAP, and PCA, see Table 3 below.

As panels expand and algorithms become more integrated, these visual maps are increasingly used not only
for exploration but also for communication—helping teams and stakeholders quickly grasp complex findings. In
many ways, dimensionality reduction turns data into a narrative, making it easier to share discoveries and drive decisions.
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Table 3

Algorithm

Core approach

Strengths

Limitations

Runtime /
scalability

Nonlinear embedding

Excellent local structure;

Poor global structure;

Slow for >100k cells;

t-SNE preserving local widely used for slow on large datasets; .
. B A often minutes to hours
neighborhoods visualisation non-deterministic
Manifold approximation + Preserves local & global Sensﬂllve to parameters; Fast, handles millions;
UMAP raph lavout structure; faster than can distort distances; noar inear sealin
graph fay t-SNE; scalable stochastic results 9
Linear projection Very fast; interpretable; D n.olnhhear Very fast, scales easily
PCA o . I . patterns; limited for -
maximising variance good for initial reduction L to millions of events
visualisation
The CRO perspective

Although clinical trials do not typically include the most complex flow cytometry panels, we do experience

a clear trend toward higher complexity in the requested analyses over recent years. This shift means that
manual gating, while historically the gold standard, is becoming increasingly impractical as marker counts

and event reportable numbers grow. Unsupervised clustering and dimensionality reduction are no longer just
“nice to have”—they’re becoming essential for efficiency, consistency, and while providing deeper insights. For
a CRO, adopting these approaches isn’t just about picking an algorithm; it’s about finding the right balance
between accuracy, speed, and practicality. We need to define optimal settings for these tools, ensure they run
within reasonable computation times, and have the digital infrastructure to support them. Large datasets can
push local hardware to its limits, so scalable solutions like cloud-based platforms are increasingly attractive
for timely delivery. At the same time, assay validation remains central, and data analysis—whether manual or

automated—must meet regulatory expectations and fit-for-purpose principles. The challenge is deciding how to
validate the unsupervised workflows, where algorithm choices and parameter sensitivity can influence results.
Standardising processes for algorithm selection, tuning, and quality control will help reduce variability and build
confidence. Transparency in computational method application and clear documentation of validation steps

will be key for regulatory acceptance. Ultimately, moving toward automation and advanced analytics isn’t just a
technical upgrade - it’s a strategic step that positions CROs to deliver high-quality, reproducible insights in an
era of increasingly complex flow cytometry data. And while the journey requires investment and planning, the
payoff is clear: faster, smarter, and more reliable data analysis for clinical trials.
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Case study: Developing a pipeline for unsupervised data processing
of a 25-color phenotyping panel

©

Challenge

ICON has validated a 25-color Immunoprofiling Assay (Cytek Biosciences) for off-the-shelf use in
whole blood and isolated PBMCs. As part of the implementation and validation, we aimed to develop
an analysis pipeline that is optimised to perform unsupervised processing of this high-parameter
phenotyping panel.

Solution

A pipeline was built in R, leveraging well-established algorithms including PeacoQC, FlowSOM, and
UMAP. These algorithms are available in FCS Express as well, and therefore most pipeline (components)
are compatible with our current analysis software. The pipeline consists of the following steps:

— Margin event removal

— Spectral unmixing (AutoSpectral)

— Doublet removal (RemoveDoublets, PeacoQQC)
— Quality control and clean-up (PeacoQC)

— Clustering (FlowSOM)

— Cluster identification algorithm (R)

— Visualisation (UMAP)

— Reporting

Each step was optimised for the 25-color panel, while maintaining flexibility for the pipeline to be
adapted to other panels by implementing minor modifications. Optimisation of each algorithm turned
out to be critical, and requires full understanding of the parameters that are used by each algorithm.
Small changes/adaptations can have strong impact on the results, for example in the QC and clean-
up steps, which then also impacts the outcome of the clustering. In addition, small unmixing errors
that might be tolerated in manual gating can significantly impact the clustering results because closely
related fluorophores may introduce noise across multiple markers. Another aspect taken into account
was algorithm runtime and scalability. As summarised in this paper, multiple algortihms may be available
for specific steps, and each algorithm has pro’s and con’s. The overall runtime of an analysis depends
on the sum of the individual algorithm runtimes, and the size of the dataset. For large datasets as in
high-parameter flow — aiming to provide insight into small subsets — the choice of algorithms is strongly
impacting the overall analysis runtime. In a follow-up publication, we will elaborate further regarding the
algorithm selections, and in depth parameter settings.

Post QC, clean-up and clustering, we implemented an R script that serves as cluster identification
algorithm, and assigns individual clusters to subsets. The pipeline currently identifies the immune cell
populations listed below:

T cells: T-helper, T-cytotoxic, T-double positive/negative, T-regulatory, T-gamma-delta, NK-T

B cells: Naive, Memory and Marginal zone, Plasmablasts

NK cells: Early, Mature, and Terminal NK cells

Monocytes: Classical, Intermediate, Non-classical

— Basophils
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While small subsets such as dendritic cells are clustered, the unsupervised cluster identification for these
populations is not yet fully accurate. For these types of subsets, a manual gating step remains necessary, but
we continue to work on improving the R script to also work with very small subsets in the near future as well.

The images below provide some insight into the functionality of the pipeline. Figure 3 represents T-cell
subpopulations, as identified by colors, in a CD4-CD8-plot. Each subset is defined by specific rules on marker
expression, and may contain multiple clusters. It is interesting to observe that the subsets in some occasions
slighty overlap or mix, thereby highlighting that data is handled differently than manually gated, where we

are tied to the hard borders as defined by our gates. This highlights the power of using clustering rather than
gating, as gating is performed in 2D-plots only, whereas clustering evaluates all data dimensions in parallel.

Figure 4 is an example UMAP aiming to visualize all clustered subsets in a 2D overview. We chose to use UMAP
for visualisation, because it can use non-linear data and handles large datasets faster than t-SNE.

Since we acquire at least 500.000 white blood cells for this assay, UMAP provided significant time saving

when running the full pipeline.

4 N

Subsets:

Tcell.Cytotoxic
Tcell.Double.neg
Tcell.Double.pos
Tcell.Helper
NKTcell
Tcell.Regulatory

- /

Figure 3. Representative example of unsupervised clustering of T-cell subsets. The dotplot contains all CD3+ T-cell events (as
identified by FlowSOM), plotted for CD4 and CD8 expression. The T-cell populations as defined by the clustering and subsequent
subset-identification-algorithm are represented by the individual colors.

/ \ Beell.Memory
Bcell.Naive
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Figure 4. Representative example of a UMAP visualization from the 25-color analysis pipeline. The visualization provides
a 2D-representation of the clustered subsets from a PBMC sample. Subsets as defined by the identification-algorithm are
represented by individual colors, presented on the right-hand side.
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Outcome and next steps

We successfully developed a pipeline that performs unsupervised data clean-up, spectral unmixing, and
clustering for high-parameter flow cytometry panels. The pipeline is currently undergoing validation, comparing
its outputs to manually gated results.

Future development will focus on refining subset annotations for rare populations such as dendritic cells and
expanding the pipeline’s capabilities for deeper phenotyping. A follow-up paper will detail the validation results
and outline planned improvements and updates.

Conclusion

This paper provides an overview of current possibilities for applying unsupervised algorithms and automated
pipelines in high-parameter flow cytometry analysis. We outline key steps such as data clean-up, spectral
unmixing, doublet removal, clustering, and visualization, and discuss how these approaches can improve
consistency and scalability compared to conventional gating. Our case study illustrates how such a pipeline
can be applied for a 25-color phenotyping panel, highlighting both the potential for streamlined workflows

and the importance of optimisation for reliable results. From a CRO perspective, these approaches offer
opportunities to reduce variability, accelerate turnaround times, and deliver high-quality data for clinical trials.
However, these pipelines must be appropriately qualified and validated, and careful consideration is required to
define fit-for-purpose validation strategies. Looking ahead, further development will focus on refining rare subset
identification, enhancing batch harmonisation, and expanding automation to meet regulatory expectations.
Together, these developments mark an exciting advancement in clinical trial flow cytometry, positioning
automated and unsupervised analysis pipelines to provide robust, reproducible data that delivers faster, reliable
data, in support of clinical trials.

Key takeaways

— Unsupervised algorithms and automated pipelines offer scalable, consistent solutions for high
parameter flow cytometry, reducing manual variability

— Our case study highlights how such a pipeline can streamline analysis of a 25-color panel while
emphasizing the need for optimization and validation

— Future developments will focus on rare subset annotation, improved batch harmonization,
and expanded automation to meet clinical trial and regulatory requirements

— Validation is essential to ensure automated pipelines are reliable and reproducible, but strategies
are still evolving and consensus approach has yet to be established

Many sponsors choose to outsource customised
assays and need a partner with the expertise to
address their trial requirements. ICON has the Contributions to this article were made
scientific expertise to implement a broad range of by members of ICON’s global Flow

flow cytometric assays in clinical trials. We cultivate
a partnership with sponsors to provide scientific
expertise, full-service assay development, and

Cytometry team:

validation, followed by high- quality sample analysis Henko Tadema

to drive successful clinical trials forward. Giel Bakker

For more information or to discuss your project Ymkje Brouwer
requirements, please visit ICONplc.com/labs or Than-Long Nguyen

email: globalflowcytometryrequests@iconplc.com. Ron Suk
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