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Flow cytometry is a powerful technology for cellular 
analysis that combines laser-based detection with 
fluorophore-conjugated antibodies to identify cell 
subsets and characterise their properties. Since 
its inception, the number of detectable parameters 
has grown dramatically—from just two colors in 
early instruments to more than 40 today—driven 
by advances in cytometer hardware and the 
development of novel fluorophores. Spectral flow 
cytometry now enables panels with 45 or more 
colors (e.g., OMIP-102 and OMIP-109), significantly 
increasing the dimensionality of data generated. In 
practice, this translates into hundreds of reportable 
parameters per sample; for example, panels of 15–20 
colors have already produced over 200 reportables, 
and spectral flow cytometry is expected to push 
these numbers even higher.

The evolution of flow cytometry technology has significantly expanded the complexity of assays. 
While conventional instruments enabled incremental increases in fluorophore usage for over a 
decade, the recent adoption of spectral flow cytometry has accelerated this trend dramatically. 
Assays have shifted from 8-color configurations to high-parameter panels, with most clinical trial 
workflows now utilising 18- to 25-color instruments. These high-complexity panels deliver deeper 
biological insights and support a broader range of reportables, but they also introduce substantial 
challenges for data analysis. With spectral flow cytometry now integrated into ICON’s global 
capabilities, the volume and dimensionality of data per sample continue to grow. To address this 
complexity, we are actively developing and implementing semi-automated analysis pipelines 
that incorporate advanced algorithms. These approaches enable unsupervised clustering, 
dimensionality reduction, and overall improvements in data quality, ensuring robust and scalable 
workflows for high-dimensional datasets.

Introduction

Leveraging algorithms and machine learning 
for unsupervised flow cytometry data analysis

Traditionally, data analysis relies on manual gating, 
where cell subsets are identified by drawing gates on 
two-dimensional plots (dot plots) of marker expression 
- such as CD4 versus CD8. While templates and 
expert analysts help standardise this process, it 
remains time-consuming, subjective, and prone to 
variability. As panel complexity increases, the number 
of required plots and gates grows exponentially, 
making conventional gating increasingly impractical 
for high-parameter assays.

Fortunately, the evolution of flow cytometry has 
been accompanied by significant advances in 
computational algorithms and bioinformatics tools 
that support and partially automate data analysis. 
These algorithms not only facilitate clustering and 
dimensionality reduction but also improve data 
quality through automated QC and cleanup. Many 
of these tools are integrated into commercial 
software platforms widely used in pharmaceutical 
and CRO environments, such as FCS Express and 
OMIQ, which allow users to build analysis pipelines 
combining multiple algorithms. However, to fully 
leverage these capabilities- especially for custom 
workflows- programming expertise is often required, 
as most advanced flow cytometry analysis tools are 
developed in R.
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A data analysis pipeline may include the following steps:

The potential of such pipelines is substantial. They 
not only deliver significant time savings but can 
also enhance the overall quality, consistency, and 
reproducibility of the reported data. By reducing 
manual intervention and variability, these approaches 
support more robust and scalable workflows—
critical for high-dimensional assays in regulated 
environments.

Removal of detector-based margin events

Data clean-up based on parameters such 
as dynamic range and flow rate

Data normalisation to mitigate batch effects

Doublet removal

Clustering and dimensionality reduction

Visualisation and export of processed data

In this paper, we aim to provide an overview of 
current capabilities and share our experience 
and perspective on the use of algorithms and 
unsupervised data analysis tools. We present a 
case study that illustrates the potential of these 
approaches while addressing the challenges of 
implementing (semi-)automated pipelines within a 
regulated framework.

Figure 1. Evolution of fluorophore use in flow cytometry assays since the early use of flow cytometry
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Implementing analysis pipelines for flow cytometry data analysis
As flow cytometry assays become more complex, there is growing interest in building structured analysis 
pipelines that go beyond manual gating. A wide range of algorithms have been developed specifically for flow 
cytometry data processing, and many are available within analysis software such as FCS Express. These 
algorithms can be grouped into categories like quality control, data normalisation and clean-up, clustering, and 
dimensionality reduction, each addressing a different challenge in managing high-dimensional datasets. In this 
section, we provide an overview of selected tools and approaches, highlighting how they could fit into future workflows.

Quality control and margin removal: 
Cleaning up before analysis
Before performing clustering or visualisation, it’s 
essential to make sure the data is clean and reliable. 
Quality control tools help identify and remove anom-
alies that can creep in during acquisition—issues 
like clogs, bubbles, fluctuations in flow rate, or elec-
tronic noise. These problems aren’t always obvious 
and can distort downstream analyses, which is why 
computational approaches are so valuable. Popular 
tools include FlowAI, FlowCut, and PeacoQC, each 
using slightly different strategies but sharing the same 
goal: leveraging raw data characteristics to flag and 
remove problematic regions in the data. Most of 
these algorithms assume that a well-acquired dataset 
should have stable fluorescence levels and flow rates 
throughout the acquisition. By dividing data into seg-
ments (or “buckets”) and comparing patterns across 
them, they can detect irregularities and either remove 
or flag outlier events. A few tools are summarised 
below:

	– PeacoQC (Peak Extraction And Cleaning 
Oriented Quality Control) was introduced 
by Emmaneel et al. in 2022 and works on 
transformed, compensated/unmixed data. It 
identifies density peaks in marker expression 
and filters out peaks with aberrant values, 
making it particularly useful for complex panels.

	– FlowAI, published by Monaco et al. in 2016, 
evaluates three properties in the data: flow 
rate, signal acquisition, and dynamic range. 
It removes regions with unstable flow or 
signal fluctuations and trims events outside 
the dynamic range, ensuring only high-quality 
data remains.

	– FlowCut, detailed in Meskas et al., takes 
a slightly different approach by segmenting 
events along the time axis and applying 
statistical tests to detect abrupt shifts or 
irregular fluorescence patterns. This makes 
it effective for cleaning datasets affected by 
clogs or instrument instability.

As panels grow and datasets scale, automated QC 
becomes indispensable—not just for saving time but 
for ensuring reproducibility and confidence in the 
results. By starting with clean data, we set the stage 
for accurate clustering, dimensionality reduction, and 
all downstream analyses.

Data normalisation: Keeping variability 
in check
After clean-up and quality control, the next step in 
many analysis pipelines is data normalisation. The 
goal here is to: remove non-biological variability so 
that differences in the data truly reflect biology, not 
technical noise. This is especially important in clinical 
studies where samples may be processed across 
different runs, instruments, or laboratories. Without 
normalisation, these technical differences can mask 
real biological signals or negatively impact clustering 
or gating. 

The challenge and requirement is to apply 
normalisation in a way that it corrects technical 
variance while preserving biological differences. 
Several tools have been developed for this purpose, 
including gaussNorm, CytoNorm, and cyCombine, 
each with its own strengths and limitations. For a 
high-level comparison of these algorithms, see Table 
1 below. In the case study presented in this paper, we 
applied CytoNorm to a 25-color phenotyping assay 
focused on reporting subsets, and observed that the 
algorithm very effectively aligns marker intensities between 
batches, thereby supporting clustering reproducibility.

Quality control and margin removal

Data normalisation
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As panels grow and studies scale across multiple sites, normalisation becomes more than a technical detail—
it’s a critical step for reproducibility and confidence in the data. By standardising this process, we can ensure 
that downstream analyses like clustering and dimensionality reduction start from a level playing field, making 
insights more reliable and easier to interpret.

Table 1

Doublet removal: An unsupervised approach
Doublets - events where two or more cells pass through the interrogation point simultaneously - can introduce 
artifacts that distort marker expression and compromise clustering accuracy. While doublet exclusion is 
straight-forward in conventional gating, automated solutions are available, providing ease of use, and consistency.

Algorithmic approaches detect doublets based on signal patterns and statistical anomalies rather than predefined 
gates. For example, the RemoveDoublets() function in the PeacoQC package applies predefined Median 
Associated Distances (MAD) to the SSC-parameters to exclude doublets effectively. This helps keep the dataset 
clean and ensures that subsequent analysis focuses on true single-cell events.

Figure 2. Example of doublet removal using PeacoQC RemoveDoublets(). The left image shows a sample pre-removal, and the right 
image shows the same sample after the automated doublet removal algorithm.

Tool Description
Control samples 
required

Cell-type aware
Cross-batch 
integration

gaussNorm

Per-channel landmark-
based normalisation 
aligning signal 
distributions; fast and 
simple for flow cytometry

Optional – predefined 
landmarks or automatic 
peak detection

No – treats all cells 
uniformly

Yes – aligns channel 
distributions across 
batches (assumes 
comparable biology)

CytoNorm

Learns normalisation 
per cell subset using 
FlowSOM clusters and 
control samples; well 
suited for clinical studies

Yes – requires control 
samples in each batch

Yes – cluster-aware 
(FlowSOM-based, not 
biologically supervised)

Yes – model-based 
batch correction using 
learned cluster-specific 
transformations

cyCombine

Empirical Bayes–based 
batch correction 
and integration 
across batches and 
technologies, without 
shared controls

No – works without 
technical replicates

Yes – optionally cell-type 
aware via clustering or 
metadata

Yes – harmonises feature 
space across batches 
and modalities

Doublet removal
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Clustering: Moving beyond manual gating
Clustering is all about finding patterns in the data without telling the algorithm what to look for—a big shift from 
traditional manual gating. Instead of drawing gates by hand in the analysis software, clustering automatically 
groups cells based on similarities across all markers, saving time and reducing bias. For example, FlowSOM 
uses self-organising maps to handle large, complex datasets efficiently, while K-means offers a simple, fast 
way to partition data into clusters. Another tool,  Phenograph, uses graph-based approaches to uncover rare 
populations and subtle differences that manual gating might miss. Together, these algorithms make it possible 
to explore cellular diversity at a scale and depth that was previously out of reach. In short, clustering is a 
critical component of automated workflows - turning complexity into clarity and freeing scientists to focus on 
interpretation rather than working through the data manually. For a quick comparison of these algorithms, see 
Table 2 below.

As datasets grow larger and panels become more complex, clustering is no longer just an efficiency tool—it’s 
a necessity for reproducibility and scalability. By reducing human bias and standardising the analysis, it helps 
CROs and research teams deliver consistent, high-quality results across high-complexity flow cytometry studies.

Dimensionality reduction: Making complexity visible
Building on clustering, dimensionality reduction takes things a step further by turning complex, high 
dimensional data into something we can actually see and interpret. Dimensionality reduction algorithms create 
intuitive two-dimensional maps that reveal patterns and relationships at a glance. t-SNE has been a favorite 
for years because it does a great job showing local structure—helping us spot subtle differences between 
cell populations. UMAP builds on that idea but adds speed and scalability, while also preserving more of the 
global picture, which makes it ideal for larger datasets. Together, these tools transform raw numbers into visual 
maps of cellular diversity, making interpretation of the data much easier. In modern workflows, dimensionality 
reduction isn’t just a nice visualisation trick—it’s a critical bridge between complex data and meaningful 
insights. For a side-by-side look at t-SNE, UMAP, and PCA, see Table 3 below.

As panels expand and algorithms become more integrated, these visual maps are increasingly used not only 
for exploration but also for communication—helping teams and stakeholders quickly grasp complex findings. In 
many ways, dimensionality reduction turns data into a narrative, making it easier to share discoveries and drive decisions.

Algorithm Core approach
Key 
parameters

Strengths Limitations
Runtime / 
scalability

FlowSOM

Self-organising map 
to project data onto a 
grid, followed by meta-
clustering

Grid size, 
metacluster 
number

Very fast on 
large datasets; 
captures 
hierarchy; good 
visualisation

Sensitive to grid/
meta-cluster choice; 
may miss rare 
subsets

Fast, near-linear; 
scales to millions of cells

K-means

Iteratively partitions 
data into k clusters 
by minimising within-
cluster variance

k, initialisation
Simple, very 
fast; widely 
available

Assumes spherical 
clusters; poor 
on non-convex; 
sensitive to k

Very fast; handles large 
n easily

Phenograph
Builds k-NN graph and 
detects communities 
using Louvain/Leiden

k, metric, 
resolution

Detects 
complex and 
rare populations; 
shape agnostic

Computationally 
heavy; memory 
intensive; 
sensitive to k

Moderate-heavy; 
practical up to ~1–2M 
cells; may need 
subsampling

Table 2

Clustering

Dimensionality reduction
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The CRO perspective
Although clinical trials do not typically include the most complex flow cytometry panels, we do experience 
a clear trend toward higher complexity in the requested analyses over recent years. This shift means that 
manual gating, while historically the gold standard, is becoming increasingly impractical as marker counts 
and event reportable numbers grow. Unsupervised clustering and dimensionality reduction are no longer just 
“nice to have”—they’re becoming essential for efficiency, consistency, and while providing deeper insights. For 
a CRO, adopting these approaches isn’t just about picking an algorithm; it’s about finding the right balance 
between accuracy, speed, and practicality. We need to define optimal settings for these tools, ensure they run 
within reasonable computation times, and have the digital infrastructure to support them. Large datasets can 
push local hardware to its limits, so scalable solutions like cloud-based platforms are increasingly attractive 
for timely delivery. At the same time, assay validation remains central, and data analysis—whether manual or 
automated—must meet regulatory expectations and fit-for-purpose principles. The challenge is deciding how to 
validate the unsupervised workflows, where algorithm choices and parameter sensitivity can influence results. 
Standardising processes for algorithm selection, tuning, and quality control will help reduce variability and build 
confidence. Transparency in computational method application and clear documentation of validation steps 
will be key for regulatory acceptance. Ultimately, moving toward automation and advanced analytics isn’t just a 
technical upgrade - it’s a strategic step that positions CROs to deliver high-quality, reproducible insights in an 
era of increasingly complex flow cytometry data. And while the journey requires investment and planning, the 
payoff is clear: faster, smarter, and more reliable data analysis for clinical trials.

Algorithm Core approach Strengths Limitations
Runtime / 
scalability

t-SNE
Nonlinear embedding 
preserving local 
neighborhoods

Excellent local structure; 
widely used for 
visualisation

Poor global structure; 
slow on large datasets; 
non-deterministic

Slow for >100k cells; 
often minutes to hours

UMAP Manifold approximation + 
graph layout

Preserves local & global 
structure; faster than 
t-SNE; scalable

Sensitive to parameters; 
can distort distances; 
stochastic results

Fast, handles millions; 
near-linear scaling

PCA Linear projection 
maximising variance

Very fast; interpretable; 
good for initial reduction

Misses nonlinear 
patterns; limited for 
visualisation

Very fast, scales easily 
to millions of events

Table 3
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Case study: Developing a pipeline for unsupervised data processing 
of a 25-color phenotyping panel

Challenge

ICON has validated a 25-color Immunoprofiling Assay (Cytek Biosciences) for off-the-shelf use in 
whole blood and isolated PBMCs. As part of the implementation and validation, we aimed to develop 
an analysis pipeline that is optimised to perform unsupervised processing of this high-parameter 
phenotyping panel.

Solution

A pipeline was built in R, leveraging well-established algorithms including PeacoQC, FlowSOM, and 
UMAP. These algorithms are available in FCS Express as well, and therefore most pipeline (components) 
are compatible with our current analysis software. The pipeline consists of the following steps:

	– Margin event removal

	– Spectral unmixing (AutoSpectral)

	– Doublet removal (RemoveDoublets, PeacoQC)

	– Quality control and clean-up (PeacoQC)

	– Clustering (FlowSOM)

	– Cluster identification algorithm (R)

	– Visualisation (UMAP)

	– Reporting

Each step was optimised for the 25-color panel, while maintaining flexibility for the pipeline to be 
adapted to other panels by implementing minor modifications. Optimisation of each algorithm turned 
out to be critical, and requires full understanding of the parameters that are used by each algorithm. 
Small changes/adaptations can have strong impact on the results, for example in the QC and clean-
up steps, which then also impacts the outcome of the clustering. In addition, small unmixing errors 
that might be tolerated in manual gating can significantly impact the clustering results because closely 
related fluorophores may introduce noise across multiple markers. Another aspect taken into account 
was algorithm runtime and scalability. As summarised in this paper, multiple algortihms may be available 
for specific steps, and each algorithm has pro’s and con’s. The overall runtime of an analysis depends 
on the sum of the individual algorithm runtimes, and the size of the dataset. For large datasets as in 
high-parameter flow – aiming to provide insight into small subsets – the choice of algorithms is strongly 
impacting the overall analysis runtime. In a follow-up publication, we will elaborate further regarding the 
algorithm selections, and in depth parameter settings.

Post QC, clean-up and clustering, we implemented an R script that serves as cluster identification 
algorithm, and assigns individual clusters to subsets. The pipeline currently identifies the immune cell 
populations listed below:

	– T cells: T-helper, T-cytotoxic, T-double positive/negative, T-regulatory, T-gamma-delta, NK-T

	– B cells: Naïve, Memory and Marginal zone, Plasmablasts

	– NK cells: Early, Mature, and Terminal NK cells

	– Monocytes: Classical, Intermediate, Non-classical

	– Basophils

Case study
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While small subsets such as dendritic cells are clustered, the unsupervised cluster identification for these 
populations is not yet fully accurate. For these types of subsets, a manual gating step remains necessary, but 
we continue to work on improving the R script to also work with very small subsets in the near future as well.

The images below provide some insight into the functionality of the pipeline. Figure 3 represents T-cell 
subpopulations, as identified by colors, in a CD4-CD8-plot. Each subset is defined by specific rules on marker 
expression, and may contain multiple clusters. It is interesting to observe that the subsets in some occasions 
slighty overlap or mix, thereby highlighting that data is handled differently than manually gated, where we 
are tied to the hard borders as defined by our gates. This highlights the power of using clustering rather than 
gating, as gating is performed in 2D-plots only, whereas clustering evaluates all data dimensions in parallel.

Figure 4 is an example UMAP aiming to visualize all clustered subsets in a 2D overview. We chose to use UMAP 
for visualisation, because it can use non-linear data and handles large datasets faster than t-SNE. 
Since we acquire at least 500.000 white blood cells for this assay, UMAP provided significant time saving 
when running the full pipeline.

Figure 3. Representative example of unsupervised clustering of T-cell subsets. The dotplot contains all CD3+ T-cell events (as 
identified by FlowSOM), plotted for CD4 and CD8 expression. The T-cell populations as defined by the clustering and subsequent 
subset-identification-algorithm are represented by the individual colors.

Figure 4. Representative example of a UMAP visualization from the 25-color analysis pipeline. The visualization provides 
a 2D-representation of the clustered subsets from a PBMC sample. Subsets as defined by the identification-algorithm are 
represented by individual colors, presented on the right-hand side. 

Subsets:

Tcell.Cytotoxic 
Tcell.Double.neg 
Tcell.Double.pos 
Tcell.Helper 
NK.Tcell 
Tcell.Regulatory

Bcell.Memory 
Bcell.Naive 
Bcell.not classified 
Bcell.Unswitched 
Dendritic.Cell 
Monocyte.Classical 
Monocyte.Intermediate 
Monocyte.NonClassical 
NKcell.Early 
NKcell.Mature 
Unspecified 
Bcell.Plasmablast 
Tcell.Cytotoxic 
Tcell.Double.neg 
Tcell.Double.pos 
Tcell.Helper 
NK.Tcell 
Tcell.Regulatory 
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Outcome and next steps
We successfully developed a pipeline that performs unsupervised data clean-up, spectral unmixing, and 
clustering for high-parameter flow cytometry panels. The pipeline is currently undergoing validation, comparing 
its outputs to manually gated results.

Future development will focus on refining subset annotations for rare populations such as dendritic cells and 
expanding the pipeline’s capabilities for deeper phenotyping. A follow-up paper will detail the validation results 
and outline planned improvements and updates.

Conclusion
This paper provides an overview of current possibilities for applying unsupervised algorithms and automated 
pipelines in high-parameter flow cytometry analysis. We outline key steps such as data clean-up, spectral 
unmixing, doublet removal, clustering, and visualization, and discuss how these approaches can improve 
consistency and scalability compared to conventional gating. Our case study illustrates how such a pipeline 
can be applied for a 25-color phenotyping panel, highlighting both the potential for streamlined workflows 
and the importance of optimisation for reliable results. From a CRO perspective, these approaches offer 
opportunities to reduce variability, accelerate turnaround times, and deliver high-quality data for clinical trials. 
However, these pipelines must be appropriately qualified and validated, and careful consideration is required to 
define fit-for-purpose validation strategies. Looking ahead, further development will focus on refining rare subset 
identification, enhancing batch harmonisation, and expanding automation to meet regulatory expectations. 
Together, these developments mark an exciting advancement in clinical trial flow cytometry, positioning 
automated and unsupervised analysis pipelines to provide robust, reproducible data that delivers faster, reliable 
data, in support of clinical trials.

Key takeaways

	– Unsupervised algorithms and automated pipelines offer scalable, consistent solutions for high 
parameter flow cytometry, reducing manual variability

	– Our case study highlights how such a pipeline can streamline analysis of a 25-color panel while 
emphasizing the need for optimization and validation

	– Future developments will focus on rare subset annotation, improved batch harmonization, 
and expanded automation to meet clinical trial and regulatory requirements

	– Validation is essential to ensure automated pipelines are reliable and reproducible, but strategies 
are still evolving and consensus approach has yet to be established

Many sponsors choose to outsource customised 
assays and need a partner with the expertise to 
address their trial requirements. ICON has the 
scientific expertise to implement a broad range of 
flow cytometric assays in clinical trials. We cultivate 
a partnership with sponsors to provide scientific 
expertise, full-service assay development, and 
validation, followed by high- quality sample analysis 
to drive successful clinical trials forward.

For more information or to discuss your project 
requirements, please visit ICONplc.com/labs or 
email: globalflowcytometryrequests@iconplc.com.

Contributions to this article were made 
by members of ICON’s global Flow 
Cytometry team:

Henko Tadema 
Giel Bakker 
Ymkje Brouwer 
Than-Long Nguyen  
Ron Suk

The future of flow cytometry data analysis; Navigating a new world with algorithms and machine learning

12

https://www.iconplc.com/solutions/laboratories


References

1.	 OMIP-102: 50-color phenotyping of the human immune system with in-depth assessment of T cells and dendritic cells. 
Konecny et al. Cytometry A. 2024 Jun;105(6):430-436. doi: 10.1002/cyto.a.24841. Epub 2024 Apr 18

2.	 OMIP-109: 45-color full spectrum flow cytometry panel for deep immunophenotyping of the major lineages present in 
human peripheral blood mononuclear cells with emphasis on the T cell memory compartment. Park et al. Cytometry A. 2024 
Nov;105(11):807-815. doi: 10.1002/cyto.a.24900. Epub 2024 Oct 28

3.	 PeacoQC: Peak-based selection of high quality cytometry data. Emmaneel et al. Cytometry A. 2022 Apr;101(4):325-338. doi: 
10.1002/cyto.a.24501. Epub 2021 Oct 3

4.	 FlowCore: data structures package for flow cytometry data. Bioconductor Project. Le Meur, N., Hahne, F., Ellis, B., & Haaland, P. (2007)

5.	 flowAI: automatic and interactive anomaly discerning tools for flow cytometry data. Monaco et al. Bioinformatics, Volume 32, Issue 
16, August 2016, Pages 2473–2480, https://doi.org/10.1093/bioinformatics/btw191

6.	 flowCut: An R package for automated removal of outlier events and flagging of files based on time versus fluorescence analysis. 
Meskas et al. Cytometry A. 2023 Jan;103(1):71-81. doi: 10.1002/cyto.a.24670. Epub 2022 Jul 23

7.	 CytoNorm 2.0: A flexible normalization framework for cytometry data without requiring dedicated controls, Quintelier et al. 
Cytometry A. 2025 Feb;107(2):69-87. doi: 10.1002/cyto.a.24910. Epub 2025 Jan 28

8.	 cyCombine allows for robust integration of single-cell cytometry datasets within and across technologies. Pedersen et al. Nat 
Commun. 2022 Mar 31;13(1):1698. doi: 10.1038/s41467-022-29383-5

9.	 Per-channel basis normalization methods for flow cytometry data. Hahne et al. Cytometry A. 2010 Feb;77(2):121–131. doi: 
10.1002/cyto.a.20823

10.	 FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Van Gassen et al. Cytometry A. 2015 
Jul;87(7):636-45. doi: 10.1002/cyto.a.22625. Epub 2015 Jan 8

11.	 flowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Ge, Sealfon. 
Bioinformatics. 2012 Aug 1;28(15):2052-8. doi: 10.1093/bioinformatics/bts300. Epub 2012 May 17

12.	 Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Weber, Robinson. Cytometry 
A. 2016 Dec;89(12):1084-1096. doi: 10.1002/cyto.a.23030

13.	 AutoSpectral improves spectral flow cytometry accuracy through optimised spectral unmixing and autofluorescence-matching at the 
cellular level. Burton et al. https://doi.org/10.1101/2025.10.27.684855

The future of flow cytometry data analysis; Navigating a new world with algorithms and machine learning

13

https://doi.org/10.1093/bioinformatics/btw191
https://doi.org/10.1101/2025.10.27.684855


ICON plc Corporate Headquarters

South County Business Park
Leopardstown, Dublin 18
Ireland 
T: (IRL) +353 1 291 2000
T: (US) +1 215 616 3000
F: +353 1 247 6260

ICONplc.com/contact

About ICON

ICON plc is a world-leading healthcare intelligence and clinical research organisation. From molecule to medicine, 
we advance clinical research providing outsourced services to pharmaceutical, biotechnology, medical device and 
government and public health organisations. We develop new innovations, drive emerging therapies forward and 
improve patient lives. With headquarters in Dublin, Ireland, ICON employed approximately 41,900 employees in 
106 locations in 55 countries as at December 31, 2024. For further information about ICON, visit: www.iconplc.com.

© 2026 ICON plc. All rights reserved.

https://www.iconplc.com/contact
https://www.iconplc.com/

	Introduction
	Implementing analysis pipelines for flow cytometry data analysis
	Quality control and margin removal
	Data normalisation
	Doublet removal
	Clustering
	Dimensionality reduction
	The CRO perspective
	Case study

	Conclusion
	References

